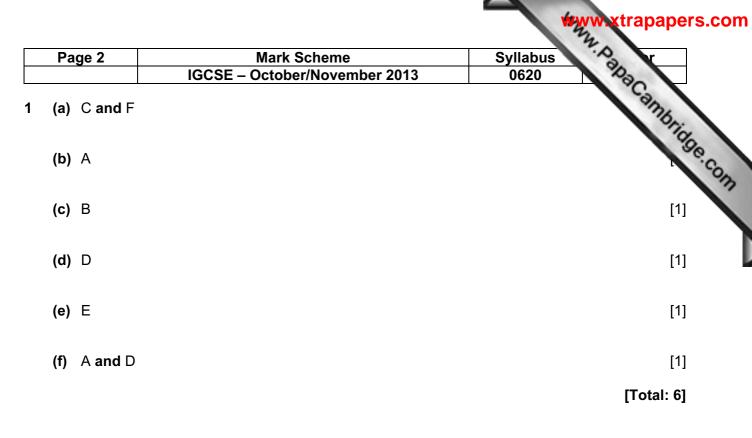


MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/32


Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October / November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

2 (a) (i) two atoms per molecule

[1]

[1]

- (ii) 7e in outer shell or level / same number of outer electrons / need to gain one electron [1]
- (iii) different number of energy levels / different number of electrons
- (iv)

halogen	solid, liquid or gas at room temperature	colour
chlorine	gas	yellow / yellow green / green
bromine	liquid	<u>brown</u> / red- <u>brown</u> / orange- <u>brown</u> not: red / orange
iodine	solid	black / grey / silver-grey / purple / violet NOT : blue-black

NOTE: one mark for each vertical column

- (b) correct formula, AsF₃
 3nbps and 1bp around all 3 fluorine atoms
 3bps and 1nbp around arsenic atom
- (c) (increased) light increases / causes forward reaction / light causes
 AgCl reacts with CuCl
 [1]
 (increased) light increases the amount of silver (and so darkens glass)
 [1]
 decrease in light reverses reaction / uses up silver / silver reacts (and so reduces darkness)[1]

[Total: 11]

PA CAMBRIDGE

[2]

[1]

[1]

[1]

2	Syllabus 🔪	Mark Scheme		Page 3
They -	0620	October/November 2013		
annb.		is endothermic	the (f	(a) (i)
Rabacambride		nd products the same moles or molecules		(ii)
[1]	<u>ermic</u>	n oxygen and nitric oxide) is <u>exoth</u> sh equilibrium to left / high tempe vour forward reaction	high	(iii)
[2]		4HNO₃ ly	4NO2 not b	(iv)
[1]		of electricity / energy	(cost	(v)
[1]		n	conta	(b) (i)
[1] [1] [1] [1]	ed sugar	/ chlorophyll absorbs light ater react bohydrates / starch / sugar / nam	chlor carbo	(ii)
[Total: 13]				

4 (a) Any one of:

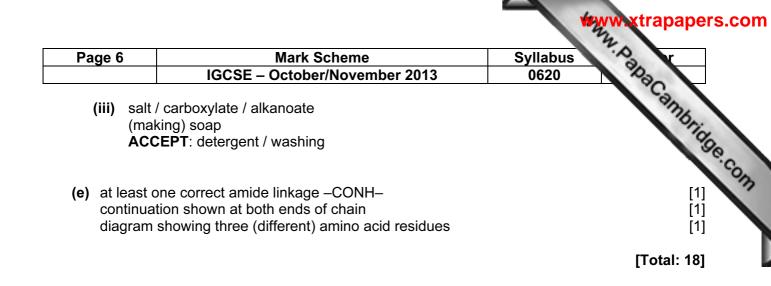
 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ for correct equation (2) not balanced = (1) only

any four of:

coke burns to form carbon dioxide / C + $O_2 \rightarrow CO_2$

this reacts with more carbon to form carbon monoxide / C + CO₂ \rightarrow 2CO

calcium carbonate decomposes to form calcium oxide and carbon dioxide / CaCO_3 \rightarrow CaO + CO_2


calcium oxide / calcium carbonate reacts with silica / silicon oxide / silicon(IV) oxide (in ore) to form calcium silicate / slag / CaO + SiO₂ \rightarrow CaSiO₃ or CaCO₃ + SiO₂ \rightarrow CaSiO₃ + CO₂

the reaction between carbon and oxygen is exothermic / produces heat / coke is used as a fuel / the slag floats on the (molten) iron / the slag and molten iron can be run off separately [6]

Page 4	Mark Scheme	Syllabus	Y.
	IGCSE – October/November 2013	0620	1
(b) (i)	greenhouse effect / CO_2 is a greenhouse gas global warming / ice caps melting / suitable exam	nple	ambrid
(ii)	burning or combustion of charcoal produces carb trees use carbon dioxide (in photosynthesis)	syllabus 0620 nple bon dioxide	[1
(iii)	cathode reaction $Fe^{3+} + 3e \rightarrow Fe$		[1
	anode reaction $2O^{2-} \rightarrow O_2 + 4e$ not balanced = (1) only		[2
		[To	otal: 13
	cause they have more than one oxidation state arges	e or valency / form ions with	differen [1
the con	re are two iron oxides (iron(III) oxide and iron npounds / iron forms iron(II) and iron(III) compoun	(II) oxide) / iron forms Fe ²⁺ a ds	nd Fe ³ [1
(b) (i)	to remove the precipitate / remove the silver(I) ch	romate(VI) / remove the residue	e [1
(ii)	to remove <u>soluble</u> impurities / remove named <u>sol</u> reactants	<u>uble</u> salt e.g. potassium nitrate /	remove [1
(iii)	to dry solid / to remove water		[1
(c) (i)	need <u>one</u> mole of potassium chromate(VI) for references to mole ratio	two moles of silver(I) nitrate /	correc [1
(ii)	mass of AgNO ₃ needed is $170 \times 0.2 \times 0.1 = 3.4c$ NOTE : if answer given is 34 they have omitted 0 ALLOW : (1) ecf		[2
(iii)	number of moles of $AgNO_3$ used = 0.02 × 0.2 = 0	.004	[1
	number of moles of Ag_2CrO_4 formed = 0.002		[1
	mass of one mole of $Ag_2CrO_4 = 332g$		
	mass of Ag ₂ CrO ₄ formed = 0.664g NOTE : use ecf when appropriate		[1

[Total: 11]

Р	age 5	Mark Scheme Syllabus	S. I
		IGCSE – October/November 2013 0620	Than 1
6 (a)	(i)	$Cu(OH)_2 \rightarrow CuO + H_2O$	annb.
	(ii)	Rb	STIC.
(b)) (i)	electron loss	Anny Parla Campbrid
	(ii)	because they can accept electrons	[1]
(c)) (i)	copper and mercury	[1]
	(ii)	add copper / mercury / metal to (named) acid and no reaction / hydrogen	no bubbles / no [1]
(d) (i)	Mn	[1]
	(ii)	(solution) becomes colourless / decolourises NOT : clear	[1]
			[1]
			[Total: 8]
' (a)) (i)	contains <u>only</u> carbon, hydrogen and oxygen hydrogen (atom) to oxygen (atom) ratio is 2:1 ALLOW : C:H:O as 1:2:1 or C _n (H ₂ O) _n	[1] [1]
	(ii)	condensation polymerisation	[1] [1]
(b)) (i)	cells / micro-organisms / plants / animals / metabolic reactions obtaining energy from food / glucose / nutrients	[1] [1]
	(ii)	$2C_2H_5OH + 2CO_2$ allow: C_2H_6O for C_2H_5OH not balanced = (1) only	[2]
	(iii)	to prevent aerobic respiration / to get anaerobic respiration / to prever lactic acid / carboxylic acids being formed / to prevent oxidation of ethan	
(c)	NO	blayed formula of methyl butanoate TE: all bonds must be shown TE: award (1) if error in alkyl groups but correct displayed structure of –C	[2]
(d) (i)	alcohol, e.g. glycerol, circled ALLOW : if only part of glycerol molecule is circled as long as it involves	[1] an OH group
	(ii)	saturated correct reason based on group $C_{17}H_{35}$ / all C–C bonds / no C = C bonds	

