CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

BBCAMRRIDGE

www.xtrapapers.com

Page 2	Page 2 Mark Scheme		.0	V
	IGCSE – October/November 2013	0620	100	

1 (a) same number of protons same number of electrons different number of neutrons

(b) (i) ²³⁵U / ²³⁹Pu NOTE: need symbol or name and nucleon number

[1]

(ii) treating cancer / chemotherapy / radiographs / tracer studies / x-ray (scans) / sterilise surgical instruments / diagnose or treat thyroid disorders / radiotherapy

[1]

paper thickness / steel thickness / radiographs / welds / tracing / fill levels in packages / food irradiation / smoke detectors

ACCEPT: any other uses

[1]

(iii) $Zr + 2H_2O \rightarrow ZrO_2 + 2H_2$ not balanced = (1) only [2]

(iv) hydrogen explodes / fire (risk)

[1]

(c)

if the oxide is	predicted result with hydrochloric acid	predicted result with aqueous aqueous sodium hydroxide
acidic	NR	R
neutral	NR	NR
basic	R	NR
amphoteric	R	R

(1) per line [4]

[Total: 13]

www.xtrapapers.com

Page 3	Mark Scheme	Syllabus	'S 1
	IGCSE – October/November 2013	0620	123
			~

- 2 (a) (i) positive and negative ions regular pattern / opposite charges closer than the same charge
 - (ii) so that charges cancel / ions may not have the same charge
 - (iii) Any three of:

high melting point or boiling point

hard

brittle

soluble in water / insoluble in organic solvents conduct (electricity) in liquid state **or** in aqueous solution / non-conductors or poor conductor (when solid)

[3]

(b) correct formula correct charges

[1] [1]

[1]

6x and 2o around oxygen

[Total: 9]

3 (a) (i) roast or heat or burn in air / roast or heat or burn in oxygen need both of the above

(ii) $ZnO + C \rightarrow Zn + CO / 2ZnO + C \rightarrow 2Zn + CO2 / ZnO + CO \rightarrow Zn + CO₂$

[1]

(b) (i) $ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$

[1]

[1]

- (ii) zinc reduces / gives electrons / displaces (copper / cobalt / nickel ions)
- [1]

forming copper / cobalt / nickel (metal which is precipitated)

[1]

(c) (i) $Zn^{2+} + 2e \rightarrow Zn$

[1]

(ii) $OH^- \rightarrow 2H_2O + O_2 +e$ (1) only $4OH^- \rightarrow 2H_2O + O_2 + 4e$

[2]

(iii) sulfuric acid / hydrogen sulfate

[1]

ACCEPT: sulfuric acid

www.xtrapapers.com

Page 4		Mark Scheme	Syllabus	8
	IGCSE	- October/November 2013	0620	Par
(d) (i)	Any two of: appearance more resistant to co harder (accept stro easier to cast			O ADAC AMBUTE
(ii)	/ anodic or	s	·	
	do not lose electror	ns		[1]
				[Total: 15
(a) (i)	$S + O_2 \rightarrow SO_2$ or sulfur burnt / roa	asted / heated in air to form sulfur o	dioxide	[1
	$2SO_2 + O_2 \rightleftharpoons 2SO$ unbalanced = (1) o			[2
	(temperature) 440	oxide in sulfuric acid (to form oleun	n)	[1] [1] [1]
(ii)	add oleum to water	r		[1
(b) Ba	C ₆ H ₁₃ SO ₃) ₂ / (C ₆ H ₁₃	SO ₃) ₂ Ba		[1]
(c) (i)	→ magnesium hex	anesulfonate + hydrogen		[1
(ii)	→ calcium hexanes	sulfonate + water		[1
(iii)	2C ₆ H ₁₃ SO ₃ H + Na ₂	$CO_3 \rightarrow 2C_6H_{13}SO_3Na + CO_2 + H_2CO_3$	D .	
	$C_6H_{13}SO_3Na = (1$ remaining species) correct and equation balanced = (1)	[1] [1]

Page	: 5	Mark Scheme	Syllabus
	IGCSE – October/November 2013 0620		0620
(d) (i	both or mea both or mea both NO	asure pH / add universal indicator a acids have a low value / pH 0–2 / same colour / red asure rate with named reactive metal, Mg, Zn (1) a fast reactions (1) asure rate using piece of insoluble carbonate, CaCO a fast reactions (1) TE: must be insoluble for first mark	The state of the s
		asure electrical conductivity (1) n good conductors (1)	
(ii) to h	ave same concentration of H ⁺ / one acid is H ₂ SO ₄ , I is dibasic, hexanesulfonic is monobasic	the other is $C_6H_{13}SO_3H$ / sulfuric [1]
(iii		rong acid is completely ionised, eak acid is partially ionised	[1] [1]
			[Total: 17]
5 (a) pr	rotectiv	ve / layer and of oxide	[1]
		epeat unit ition shown	[1] [1]
(c) (i		alyst ogical / protein	[1] [1]
(ii) hyd	rochloric acid / any strong acid / any strong alkali	[1]
(iii) ami	no acids	[1]
(iv) chro	omatography	[1]
(v	nylc	on / kevlar	[1]
(d) (i) non	-biodegradable	[1]
(ii) CH ₂	$=CH(C_6H_5)$	[1]
			[Total: 11]

[3]

Page 6	Mark Scheme	Syllabus
	IGCSE – October/November 2013	0620
		S.

(a) (i) CH₃-CH₂-CH₂-OH 6 NOT: C₃H₈O between 2030 and 2050

(ii) $C_5H_{11}OH + 7\frac{1}{2}O_2 \rightarrow 5CO_2 + 6H_2O$

- (b) any three from: same general formula same functional group same chemical properties same methods of preparation accept consecutive members differ by CH₂
- (c) (i) same molecular formula [1] different structures / different structural formulae [1]
 - [1] (ii) CH₃-CH₂-CH(OH)-CH₃ / (CH₃)₃C-OH
- (d) (i) number of moles of glucose = 72/180 = 0.4[1] [1] maximum number of moles ethanol = 0.8 maximum mass of ethanol, $M_r = 46 \,\mathrm{g}$, $0.8 \times 46 = 36.8 \,\mathrm{g}$ [1] 180(g) produces $2 \times 46 = 92(g)(1)$ $(72(g) \text{ produces}) 72/180 \times 92(1)$
 - = 36.8(g)(1)(ii) crack (petroleum or alkane) [1] [1] react with water / hydrate (ethene to make ethanol)

conditions for cracking (temperature) 450to 800°C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide / alumina / china / broken pot / chromium oxide or conditions for hydration

(temperature) 300°C / (pressure) 60 atmospheres / (catalyst) phosphoric acid [1]

[Total: 15]