

Www.xtrapapers.com MARK SCHEME for the October/November 2014 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

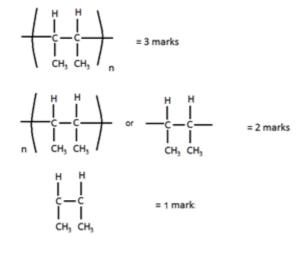
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.


	e 2	Mark Scheme	Syl Syl oer
		Cambridge IGCSE – October/November 2014	062 23
(a	a) foo	dstuffs or drugs	Syl oer 062 Bacambrid
(b	o) (i)	simple distillation	
		fractional distillation or diffusion	
		fractional distillation filtration or evaporation	
		chromatography	[5]
	(ii)	M1 dissolving M2 filtration	
		M3 evaporation or heat (to crystallisation point)	
		M4 crystallisation or allow leave to cool	[4]
		or	
		M3 crystallisation M4 filtration	
		OR: Adding to H ₂ SO ₄ method	
		M1 Add excess mixture to acid (or until no more dissolves) M2 Filtration	
		or	
		M1 Add excess acid to mixture M2 With heat	
		M3 evaporation or heat (to crystallisation point) Stop marking if	heated to dryness.
		M4 crystallisation or allow leave to cool	
		or	
		•	
		or M3 crystallisation	[Total: 10]
(a		or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$	[Total: 10] [2
(a		or M3 crystallisation M4 filtration	-
		or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1) $AlCl_{3} + 3Na \rightarrow 3NaCl + Al$	-
	spe	or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1)	[2]
	spe	or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1) $AlCl_{3} + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1) M1 electrolysis	[2] [2] [1]
-	spe 5) (i)	or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1) $AlCl_{3} + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1) M1 electrolysis M2 molten sodium chloride or	[2]
	spe 5) (i)	or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1) $AlCl_{3} + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1) M1 electrolysis M2 molten sodium chloride	[2 [2 [1]
(b	spe 5) (i)	or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1) $AlCl_{3} + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1) M1 electrolysis M2 molten sodium chloride or M1 Add named more reactive metal (e.g. K)	[2 [2 [1]
(b	spe 5) (i) (ii) ;) (i)	or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1) $AlCl_{3} + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1) M1 electrolysis M2 molten sodium chloride or M1 Add named more reactive metal (e.g. K) M2 Molten sodium chloride bauxite	[2 [2 [1] [1]
(b	spe (i) (i) (ii)	or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1) $AlCl_{3} + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1) M1 electrolysis M2 molten sodium chloride or M1 Add named more reactive metal (e.g. K) M2 Molten sodium chloride bauxite	[2 [2 [1] [1]
(b	spe 5) (i) (ii) ;) (i)	or M3 crystallisation M4 filtration $^{+} + 3e^{-} \rightarrow Al$ ecies (1) balancing (1) $AlCl_{3} + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1) M1 electrolysis M2 molten sodium chloride or M1 Add named more reactive metal (e.g. K) M2 Molten sodium chloride bauxite M1 aluminium oxide / amphoteric oxide dissolves OR iron(III) or	[2 [2 [1 [1 [1 xide / basic oxide does

PA CAMBRIDGE

		and and	
Page 3		Mark Scheme Syler Cambridge IGCSE – October/November 2014 062	r
		Mark Scheme Syl period Cambridge IGCSE – October/November 2014 062 Any two from: 062 062 Lowers (working) temperature or lowers mpt (of mixture) 062 062 increases conductivity reduces cost OR energy need 061 M1 = Any one correct equation. 061 062	br
		M1 = Any one correct equation.	Ľ
	. ,	M2 Oxygen mark Oxygen comes from oxide ions or $2O^{2-} \rightarrow O_2 + 4e$	
		M3 Carbon dioxide mark Anode reacts with oxygen / burns to form CO_2 or $C + O_2 \rightarrow CO_2$	
		M4 Carbon monoxide mark Anode reacts with limited oxygen / incompletely burns to form carbon monoxide or $2C + O_2 \rightarrow 2CO$ or CO_2 reacts with the anode to form carbon monoxide or $CO_2 + C \rightarrow 2CO$	
		M5 Fluorine mark Fluorine comes from cryolite or fluoride ions or $2F^- \rightarrow F_2 + 2e^-$	[
(d)	(i)	Has an impervious or non-porous or passive or unreactive or protective oxide layer	[
		Any two from: good conductor of heat high melting point Unreactive towards foods	[2
(a)		C_4H_8 only CH ₂ (Allow C ₁ H ₂)	[
		Any unambiguous structural formula of methyl cyclopropane or but-1-ene or but-2-ene methyl propene	e c]
	(iii)	M1 same molecular formula	[′
		M2 different structural formulae or different structures or different arrangement of atoms	[
	. ,	If 'No': one an alkane, the other an alkene or one is saturated / has single bonds, the other is unsaturated / has a double bond	
		ignore: references to the 'functional group' If 'yes' both alkanes or both saturated ignore: references to the 'functional group'	[

PA CAMBRIDGE

Page 4	Mark Scheme Sy	oer
1 490 1	Cambridge IGCSE – October/November 2014 062	abar .
(b) (i)		fraction)
	M2 Long-chained molecules or alkanes form smaller molecules (not smaller forms smaller alkenes (or alkanes)	fraction) [1]
(ii	C ₁₀ H ₂₂	[1]
(c) (i)	M1 Correct structure of one repeat unit	[1]
	M2 Continuation bonds COND on M1	[1]
	M3 use of brackets and subscript 'n' COND on M1 and M2	[1]

4

	(ii)	dibromoethane or 1,2-dibromoethane	[1]
(a)	M1	brass	[1]
	M2	copper COND on M1	[1]
(b)	(i)	$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ species (1) balancing (1)	[2]
	(ii)	Manufacture of sulfuric acid or bleach or making wood pulp or making paper or food or fruit juice or wine preservative	
		or fumigant or sterilising	[1]
(c)	(i)	sulfuric acid	[1]

PA CAMBRIDGE

~~~ ~~

| Page | 95     | Mark Scheme Syl                                                            | per              |
|------|--------|----------------------------------------------------------------------------|------------------|
|      |        | Cambridge IGCSE – October/November 2014 062                                | Day              |
| (c   | ) (ii) | $Zn^{2+} + 2e \rightarrow Zn$                                              | per<br>pacambrid |
|      |        | oxygen or water Allow $O_2$ and $H_2O$ if no name seen                     | 19               |
|      |        | sulfuric acid                                                              | [1]              |
|      |        | Allow: H <sub>2</sub> SO <sub>4</sub> if no name seen                      |                  |
| d) d | ) (i)  | from zinc to carbon                                                        | 14.              |
|      |        | (clockwise direction on or near the wire)                                  | [1]              |
|      | (ii)   | to allow <u>ions</u> to flow                                               | [1]              |
|      | (iii   | ) oxidation                                                                | [4]              |
|      |        | and loss of electron(s) or increase in oxidation number/state              | [1]              |
|      |        | reduction<br>and decrease in oxidation number/state or gain of electron(s) | [1]              |
|      |        |                                                                            | [Total: 13]      |
| (a   | ) (i)  | M1 Contain carbon, hydrogen and oxygen (only)                              | [1               |
|      |        | M2 hydrogen and oxygen is in a 2:1 ratio (or in the same ratio as water)   | [1               |
|      | (ii)   | M1 -O- linkage                                                             | [1]              |
|      |        | M2 3 monomer units with 3 blocks and 3 Oxygen atoms <b>Cond</b>            | [1]              |
|      |        |                                                                            |                  |
|      |        | -0                                                                         |                  |
| (b   | ) ca   | talyst                                                                     | [1]              |
|      | bic    | ological or protein                                                        | [1               |
|      |        |                                                                            | Ľ                |

5 (c) (i) C A B

ABC = 1 ACB = 1 BCA = 1 CBA = 1 BAC = 0 Allow 70 for C, 40 for B and 20 for A

(ii) M1 Energy mark: at higher temperature particles/molecules more have more energy or move faster [1]

M2 Collision frequency mark: collide more frequently/often **or** more collisions per unit time **or** higher rate of collisions. [1] Ignore: 'more collisions'

M3 Collision energy mark: more molecules have enough energy to react or more collisions are above activation energy or successful

[1]

[2]

## **PA CAMBRIDGE**

| Pa | ge 6 |       | Mark Scheme Syl Syl                                                                                                                                                                                                           | er        |
|----|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    |      |       | Cambridge IGCSE – October/November 2014 062                                                                                                                                                                                   |           |
|    |      | (iii) | Mark Scheme Sy. percention   Cambridge IGCSE – October/November 2014 062 062   C rate zero or enzymes denatured Total Total                                                                                                   | brit      |
| 5  | • •  | mak   | king fertilisers or pickling metals or making fibres or making phosphoric acid/phosphate<br>king dyes or making paints/pigments/dyes or making paper making plastics or making<br>ergents or tanning leather or battery acid. | es<br>[1] |
|    | (b)  | (i)   | add water (to yellow solid or to (anhydrous) iron(II) sulfate or to $FeSO_4$ or to products                                                                                                                                   | [1]       |
|    |      |       | goes green                                                                                                                                                                                                                    | [1]       |
|    |      | (ii)  | M1 Sulfur trioxide reacts with water to make sulfuric acid or equation                                                                                                                                                        | [1]       |
|    |      |       | M2 sulfur dioxide reacts with oxygen to form sulfur trioxide or equation                                                                                                                                                      | [1]       |
|    |      | (iii) | M1 = 2.07 Allow 2.1 or 2.06667                                                                                                                                                                                                |           |
|    |      |       | M2 = 62.8.g                                                                                                                                                                                                                   |           |
|    |      |       | M3 =( M2/152 =) 0.41(3)                                                                                                                                                                                                       |           |
|    |      |       | M4 (=M1/M3) rounded to the nearest whole number $\times$ = 5                                                                                                                                                                  | [4]       |
| 5  | (c)  | (i)   | nitric acid or nitric(V) acid or HNO <sub>3</sub>                                                                                                                                                                             | [1]       |
|    |      | (ii)  | $2KNO_3 = 2KNO_2 + O_2$<br>Species (1)                                                                                                                                                                                        | [2        |
|    |      |       | Balance (1) [Total:                                                                                                                                                                                                           | 12        |