Cambridge IGCSE ${ }^{\text {TM }}$

CHEMISTRY

0620/23
Paper 2 Multiple Choice (Extended)
October/November 2022
45 minutes
You must answer on the multiple choice answer sheet.
You will need: Multiple choice answer sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40 .
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 Which gas diffuses the most slowly?
A CH_{4}
B CO_{2}
C H_{2}
D NH_{3}

2 The chromatogram from four different substances is shown.
Which pure substance has the largest R_{f} value?

3 The structure of sodium chloride can be represented as shown.

What are X and Y ?

	X	Y
A	metal atom	non-metal atom
B	negative ion	electron
C	positive ion	negative ion
D	positive ion	electron

4 Which two particles have the same electronic structure?
A C and O^{2-}
B F^{-}and Na
C K^{+}and S^{2-}
D Mg and Na^{+}

5 Which statements about isotopes of the same element are correct?
1 They are atoms which have the same chemical properties because they have the same number of electrons in their outer shell.

2 They are atoms which have the same number of electrons and neutrons but different numbers of protons.

3 They are atoms which have the same number of electrons and protons but different numbers of neutrons.
A 1 and 2
B 1 and 3
C 2 only
D 3 only

6 What is the total number of shared electrons in a molecule of methanol, $\mathrm{CH}_{3} \mathrm{OH}$?
A 4
B 5
C 8
D 10

7 Which row about the structures and uses of diamond and graphite is correct?

	structure	use
A	diamond has a giant covalent structure	diamond is used to make electrodes
B	diamond has a simple covalent structure	diamond is used to make cutting tools
C	graphite has a giant covalent structure	graphite is used as a lubricant
D	graphite has a simple covalent structure	graphite is used to make cutting tools

8 Caffeine is a stimulant found in coffee.

caffeine
Which formula represents caffeine?
A $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
B $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}$
C $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
D $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}$

9 The equation for the reaction between hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}$, and oxygen is shown.

$$
2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Which mass of oxygen is required to react with 5.1 g of hydrogen sulfide?
A 2.4 g
B 4.8 g
C 7.2 g
D $\quad 14.4 \mathrm{~g}$

10 Which apparatus is used to plate a nickel object with silver?
A

B

C

D

11 When an acid is added to an alkali, the temperature of the reaction mixture rises.
Which words describe this reaction?
A decomposition and endothermic
B decomposition and exothermic
C neutralisation and endothermic
D neutralisation and exothermic

12 Some properties of four fuels are shown.
Which fuel is a gas at room temperature and makes two products when it burns in a plentiful supply of air?

	fuel	formula	melting point $/{ }^{\circ} \mathrm{C}$	boiling point $/{ }^{\circ} \mathrm{C}$
A	hydrogen	H_{2}	-259	-253
B	methane	CH_{4}	-182	-164
C	octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	-57	126
D	wax	$\mathrm{C}_{31} \mathrm{H}_{64}$	60	400

13 Dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, is converted into nitrogen dioxide, NO_{2}, in a reversible reaction.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

The forward reaction is endothermic.
Which conditions give the highest equilibrium yield of nitrogen dioxide?

	pressure / atmospheres	temperature
A	2	high
B	2	low
C	50	high
D	50	low

14 Dilute hydrochloric acid is reacted with excess calcium carbonate and the total volume of gas is measured at regular intervals.

The results are shown by line W on the graph.
The experiment is repeated but with one change.
The results of the second experiment are shown by line X on the graph.

Which change is made in the second experiment?
A A catalyst is added.
B The calcium carbonate is broken into smaller pieces.
C The concentration of the dilute hydrochloric acid is increased.
D The temperature of the dilute hydrochloric acid is decreased.

15 When hydrated copper(II) sulfate is heated, it produces white copper(II) sulfate. When water is added, the white copper(II) sulfate turns blue.

Which type of reaction is shown by these observations?
A decomposition
B displacement
C redox
D reversible

16 When magnesium is heated with zinc oxide a reaction occurs.
The equation is shown.

$$
\mathrm{Mg}+\mathrm{ZnO} \rightarrow \mathrm{MgO}+\mathrm{Zn}
$$

Which substance is oxidised?
A magnesium
B magnesium oxide
C zinc
D zinc oxide

17 The equation for the reaction between ethene and hydrogen is shown.

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}(\mathrm{~g})
$$

The bond energies are shown.

bond	bond energy in $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{C}=\mathrm{C}$	612
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{C}-\mathrm{C}$	348
$\mathrm{C}-\mathrm{H}$	416

What is the overall energy change during this reaction?
A $-284 \mathrm{~kJ} / \mathrm{mol}$
B $-132 \mathrm{~kJ} / \mathrm{mol}$
C $+132 \mathrm{~kJ} / \mathrm{mol}$
D $+284 \mathrm{~kJ} / \mathrm{mol}$

18 Ethanoic acid reacts with water to produce an acidic solution.
Which row describes the roles of ethanoic acid and water in this reaction?

	ethanoic acid	water
A	accepts a proton	donates a proton
B	accepts an electron	donates an electron
C	donates a proton	accepts a proton
D	donates an electron	accepts an electron

19 Tests are done on an aqueous solution.

test	a few drops of aqueous sodium hydroxide are added	aqueous sodium hydroxide is added in excess
observation	white precipitate	precipitate dissolves to give a colourless solution

Which cations produce these observations?

1	aluminium, Al^{3+}
2	calcium, Ca^{2+}
3	zinc, Zn^{2+}

A 1 and 2
B 1 and 3
C 1 only
D 2 and 3

20 Ammonia, NH_{3}, dissolves in water to form a dilute solution of ammonium hydroxide, $\mathrm{NH}_{4} \mathrm{OH}$.
The reaction is reversible and exists as an equilibrium mixture.

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Which statement about the mixture is correct?
A All of the ammonia and water molecules have turned into ions.
B The ammonia and water molecules have stopped changing into ions.
C The concentrations of the ammonia molecules and ammonium ions are always equal.
D The rate of the formation of ammonia molecules is equal to the rate of formation of the ammonium ions.

21 Elements E and F are in Group I of the Periodic Table.
E has a higher melting point than F.
Elements J and L are in Group VII of the Periodic Table.
J has a higher density than L.
Which elements have the highest atomic numbers in each group?
A E and J
B E and L
C F and J
D F and L

22 Which metal forms ions with one oxidation state?
A aluminium
B chromium
C copper
D iron

23 How does the nature of the oxides change across Period 3 from sodium to chlorine?
A basic \rightarrow amphoteric \rightarrow acidic
B basic \rightarrow acidic \rightarrow amphoteric
C amphoteric \rightarrow basic \rightarrow acidic
D acidic \rightarrow amphoteric \rightarrow basic

24 Zinc is a metal with a boiling point of $907^{\circ} \mathrm{C}$.
Two methods of making zinc are shown.

Which statement is correct?
A Carbon oxidises zinc oxide in method 1.
B Zinc vapour is produced in both methods.
C Zinc is produced at the anode in method 2 .
D Zinc compounds are reduced in both methods.

25 Which statement about the reactions of metals is correct?
A Iron and carbon dioxide are produced when iron(III) oxide is heated with carbon.
B Magnesium reacts with dilute hydrochloric acid producing hydrogen and chlorine.
C Potassium reacts vigorously with water producing hydrogen and an acidic solution.
D Zinc reacts with dilute sulfuric acid producing sulfur dioxide.
2612.4 g of copper(II) carbonate is heated in a test-tube. Only 50% is decomposed.
[$\left.M_{\mathrm{r}}: \mathrm{CuCO}_{3}, 124 ; \mathrm{CuO}, 80\right]$
What will be the final mass of the substances in the test-tube?
A 9.4 g
B 9.8 g
C $\quad 10.2 \mathrm{~g}$
D $\quad 10.6 \mathrm{~g}$

27 Which statement about the manufacture of ammonia is correct?
A Ammonia is manufactured by heating hydrogen and nitrogen at $50^{\circ} \mathrm{C}$ and 1.0 atm .
B Ammonia is obtained by heating hydrogen and nitrogen in the Contact process.
C Hydrogen for the manufacture of ammonia is extracted from air.
D The reaction between hydrogen and nitrogen to form ammonia is reversible.

28 The diagram shows a stage in the purification of dirty water.

Which process does this apparatus show?
A chlorination
B condensation
C distillation
D filtration

29 Which substance in polluted air damages stonework and kills trees?
A carbon dioxide
B carbon monoxide
C lead compounds
D sulfur dioxide

30 Petrol-fuelled cars produce oxides of nitrogen.
Which statement explains how oxides of nitrogen are formed?
A In the catalytic converter, the elements nitrogen and oxygen combine.
B Oxygen and nitrogen compounds in petrol combine in the car engine.
C The high temperatures in the engine provide oxygen and nitrogen with the activation energy needed to react.

D In the car engine, nitrogen compounds in petrol combine with oxygen.

31 The scheme shows four stages in the conversion of sulfur to sulfuric acid.
In which stage is a catalyst used?

32 Which element has an oxide that is used as a food preservative?
A helium
B hydrogen
C iron
D sulfur

33 Which substance gives off carbon dioxide on heating?
A lime
B limestone
C limewater
D slaked lime

34 Which formula represents ethyl butanoate?
A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
B $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

35 Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is a member of the homologous series of alcohols.
What is the formula of the alcohol in the same homologous series which contains three carbon atoms?
A $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OH}$
B $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OH}$
C $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
D $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{OH}$

36 Which type of compound reacts with hydrogen in an addition reaction?
A alkanes
B alkenes
C alcohols
D carboxylic acids

37 The equation for the reaction between methane and chlorine is shown.

$$
\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}
$$

Which type of reaction does methane undergo?
A substitution
B reduction
C condensation
D addition

38 Which functional groups form an amide linkage?
A $\mathrm{H}_{2} \mathrm{~N}$ - and -COOH
B $\mathrm{H}_{2} \mathrm{~N}$ - and $\mathrm{H}_{2} \mathrm{~N}-$
C -OH and -COOH
D -OH and $\mathrm{H}_{2} \mathrm{~N}-$

39 The structure of propene is shown.

Which diagram represents poly(propene)?

A

B

C

D

40 The equation shows the formation of a polymer called Kevlar.

Which row describes Kevlar?

	how the polymer is formed	type of polymer
A	addition polymerisation	polyamide
B	addition polymerisation	polyester
C	condensation polymerisation	polyamide
D	condensation polymerisation	polyester

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
The Periodic Table of Elements

lanthanoids	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	$\begin{gathered} \text { La } \begin{array}{c} \text { lanthanum } \\ 139 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Cerium } \\ \substack{\text { co } \\ 140} \end{gathered}$	$\underset{\substack{\text { praseodymium } \\ 141}}{\mathrm{Pr}}$	$\underset{\substack{\text { neodymium } \\ 144}}{\mathrm{Nd}}$	Pm promethium	$\underset{\substack{\text { samarium } \\ \text { Smo }}}{\mathrm{Sm}}$	$\begin{gathered} \text { Eu } \\ \text { europium } \\ 152 \end{gathered}$	$\begin{gathered} \text { gadolinium } \\ 157 \end{gathered}$	$\underset{\substack{\text { terbibum } \\ 159}}{\mathrm{~Tb}}$	$\underset{\substack{\text { dysprosium } \\ 163}}{\text { Dy }}$	Ho holmium 165	$\begin{gathered} \text { Er } \\ \text { erbium } \\ 167 \end{gathered}$	Tm thulium 169	$\begin{gathered} \mathrm{Ybb} \\ \text { yterbium } \\ 173 \end{gathered}$	$\begin{gathered} \mathrm{Lu} \\ \substack{\text { Iutetium } \\ 175} \end{gathered}$
actinoids	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac actinium	$\begin{gathered} \text { Th } \\ \substack{\text { thorium } \\ 232} \end{gathered}$	$\underset{\substack{\text { protactinium } \\ 231}}{\mathrm{~Pa}}$	$\underset{\substack{\text { uranium } \\ 238}}{U}$	Np neptunium -	Pu plutonium	Am americium \square	Cm curium	$\underset{\text { berkelium }}{\mathrm{BK}}$ $-$	Cf californium -	Es einsteinium	Fm fermium		No nobelium	Lr lawrencium

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

