UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

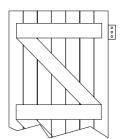
0445 DESIGN AND TECHNOLOGY

0445/42

Paper 4 (Systems and Control), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.


• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	.0
	IGCSE – May/June 2012	0445	123-

Section A

- 1 (a) The shed door would sag/drop (1) so that it would change shape to a parallelogram (1) the door would not open/close properly (1)
 - (b) 2 × diagonal braces correctly orientated Diagonal(s) unsuitable position (1)

[2]

2 Gusset plate

[1]

The material is behaving elastically (1)
It will return to its original shape when loading is removed (1)
Extension proportional to load (1) Reference to Hookes Law (1)
Any two correct points 2 × 1 marks.

[2]

4 (a) Worm is input; wormwheel is output

[1]

(b) 32:1

[1]

5 Sketch of different sized spur gears (2) same size (1) Converting rotary motion to reciprocating motion (1)

[3]

6 For equilibrium ACW Moments = CW moments Therefore 1 m x 800 N = X × 200 N (1) Thus 800 Nm /200 N = X (1) X = 4 m (1)

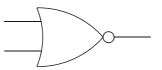
[3]

7 First figure 7 (1) Second figure 5 (1) Multiplier of 100 (1) 7500 (Ω) or 7.5 k Ω

Allow 7.5 K or 7K5

[3]

8 Slide Switch (1) DPDT switch (1) Appropriate sketch showing 2 reeds (1)

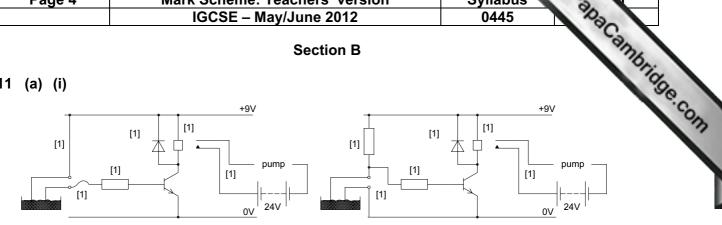

[2]

Page 3	Mark Scheme: Teachers' version	Syllabus	.0
	IGCSE – May/June 2012	0445	St.

9 Electrolytic capacitor must be connected according to its polarity (1) or it could a damaged (1) Working voltage must not be exceeded (1).

Any two correct points.

Outline shape correct (1)
Negation circle on output (1)



[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	.0	1
	IGCSE – May/June 2012	0445	100	

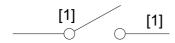
Section B

11 (a) (i)

[6]

(ii) Soldered

[1]


Moisture (1) sensor/transducer or detecting probes (1)

[2]

(iv) Variable resistor/potentiometer/Darlington pair/op amp (1) Sketch of hardware or circuit symbol (1)

[2]

(b) (i)

[2]

(ii) Slide switch/rocker switch/rotary switch.

- [1]
- (iii) It only stays 'on' when depressed (1) activating the circuit only momentarily (1)
- [2]

(c) Voltage is reduced when resistors form a potential divider (1)

Reference to Ohms law (1)

Potential divider can be formed with output transducer (1)

Any two relevant points 2 × 1 marks,

[2]

(d) Operation of relay:-

Electricity passes through coil (1) causing an electromagnetic force (1) that draws together the switch contacts (1) allowing electricity to flow though the switch (1) coil and contacts are isolated (1) 3 × 1 marks [3]

(e) (i) Potential divider

[1]

(ii) For R_1

$$V_1 = I \times R_1 \ V_1 = 0.001 \times 3000 = 3V (1)$$

$$V_2 = V_{\text{total}} - V_1 = 9 - 3 = 6V (1)$$

$$V_2 = V_{\text{total}} - V_1 = 9 - 3 = 6V (1)$$

 $V_2 = I \times R_2 R_2 = V_2/I = 6/0.001 = 6 \text{ k}\Omega (1)$

[3]

[1]

Page 5)	Mark Scheme: Teachers' version	Syllabus r		
				IGCSE – May/June 2012	0445	
	(a)	(i)	First	class/first order.	O445 ADAC ANNOTATION	-
		(ii)	Labe	elled appropriately (1) x 3 load – fulcrum - effort		So,
		(iii)	Red	engthening the arm (1) from pivot to ball holder (1) uce distance (1) from load to fulcrum (1) 2 x 1 marks w raising fulcrum height, wrapping rubber band arou	S.	1
	(b)	(i)	1000 200	equilibrium RR = RL 0 mm x E = 200 mm x 400 N (1) x 400 N/1000 mm = E (1)		
			E = 8	80 N (1)	[3]]
		(ii)	The	force acting in pin B is Shear	[1]]
	(c)	(i)		ational/Rotary illation (either way around)	[1 _]	_
		(ii)	P Pe	ear (1) Cam (1)	[2]
			Q Le	ever (1) Follower(1)	[2]
		(iii)		appropriate examples: mittent switching; moving parts on toys 2 x 1 marks	[2]
	(d)	(i)	Stee	ering of vehicles, adjustment on pillar drill table or ot	her suitable. [1]]
		(ii)		o = 1 : 10 (1) 10 (1) = 100 mm (1)	[3]]
	(e)	(i)	Frict	ement is smoother (1) so less effort needed (1) ion is reduced (1) easier to move (1) efficiency is intwo points in the explanation.	creased (1). [2]

12

(ii) Oil or grease.

Page 6		Mark Scheme: Teachers' version	Syllabus	.D.	
ugo o		IGCSE – May/June 2012	0445	No.	
(a) (i)	Sha	ckle: Tension		, Papa Cambridge	
	Bolt:	: Double (1) Shear (1)		Tage	
(ii)	Elas	sticity		[1]	
` '		ve of the shackle (1) allows stress to flow round fration points (1) that cause failure.	the shackle (1) th	is stops stress [3]	
(c) (i)		bles a rope/cable to be passed through the shackle ily and quickly (1).	(1)	[2]	
(ii)		ne: Welding mple: Joining members in a framework for a trailer o	chassis	[1] [1]	
(d) Bra	(d) Brace or triangulation (1) for increasing rigidity/stability (1) [2]				
(e) A member that has no structural purpose (1) so that if it were removed the integrity of the structure would not be compromised (1) plus appropriate sketch (1).					
(f) (i)	250	ess= compressive force/cross-sectional area (1) N/mm² = C/4 mm² (1) 250x4 N = 1000 N (1)		[3]	
(ii)		in is the change in length (1) of a sample due to an ded by the length (1), before the force is applied.	external force (1)	[3]	
(iii)	0.06	inge in length = 30-29.94 = 0.06 mm (1) 5/30 (1) in = 0.002 (1).		[3]	

13