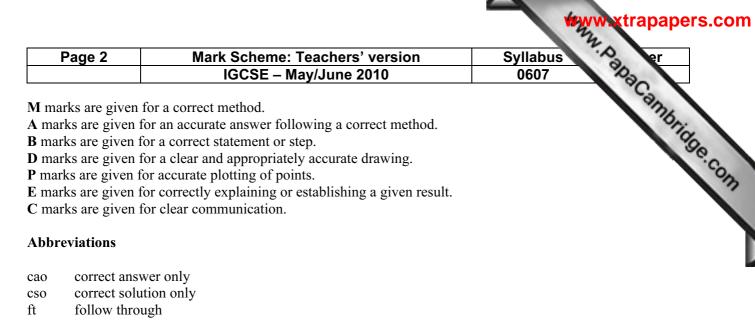


The second MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS


0607/06 Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

- oe or equivalent
- soi seen or implied
- ww without working
- www without wrong working

www.xtrapapers.com

Page 3	Mark Scheme: Teachers' version	Syllabus Syllabus
	IGCSE – May/June 2010	0607
· · ·		°C.

Question	Answer	Mark	Notes		Comments		
A 1 (a)	2	1	B1 B1		Comments Communication mark possible for complete method shown.		
(b)	8	1					
2	Prime Division Remainder	Division	Remainder	Divis	ion	Remainder	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DIVISIOII	Kennanhuer	DIVIS	sion	Kemanuer	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3^5 \div 5$	3	4 ⁵ ÷	÷ 5	4	
	7 $2^7 \div 7$ 2	$3^7 \div 7$	3	4^7 ÷		4	
	11 $2^{11} \div 11$ 2	$3^{11} \div 11$	3	4^{11} ÷	- 11	4	
		3	Deduct $\frac{1}{2}$ for error or omiss and round do B3	sion	Igno	re extra entri	es
3 (a)	11 7	1	B1				
(b)	17 8	1	B1				
4 (a)	$5^{13} \div 13 \\ 13 \\ 5(5^{12} - 1) $ 13	4	B1 B1 B1 + B1				
(b)	17	1	B1		Acce 257,	ept 3, 5, 7, 13 653	, 97, 241,
5	p	1	B1		Acce $p-1$	p = (p - 1) + 1 1 + 1	l or
6	Expression with p prime and a factor of a For example $10^{5-1} - 1$ or $10^4 - 1$ Evaluation and comment that p is not a factor	2	B1 R1		Igno	re extra expre	essions
7	$7^{24} - 1 = [(7^{12})^2 - 1] = (7^{12})^{3-1} - 1$ so 3 is prime factor $7^{24} - 1 = [(7^6)^4 - 1] = (7^6)^{5-1} - 1$	4	M1 A1		App answ	ly to one corr ver	ect
	so 5 is prime factor $7^{24} - 1 = [(7^2)^{12} - 1] = (7^2)^{13-1} - 1$ 1 1 20 12 is prime factor		B1 B1		answ	ly to other co vers deducting incorrect	
	so 13 is prime factor		61		19,4	her prime fac 3,73,181,193	,409,1201
		1	C1			munication s	een in

Page 4 Mark Scheme: Teachers' version Syllabus IGCSE – May/June 2010 0607

Question	Answer	Mark	Notes	Comments
B 1 (a)	20	1	B1	Comments
(b)	$\frac{20}{1\frac{1}{2}} \text{ oe }$	1	R1	Averaging speeds possible
2	$\frac{10+5}{1\frac{1}{4}}$ oe	2	R1 15 ÷1.25 with time in any form R1 for 15 and $1\frac{1}{4}$ shown in working	Accept 12 × 1.25 = 15
3	11.6 to 11.7(km/h)	2	M1 $\frac{10+4}{1\frac{1}{5}}$ oe	Ignore extra methods Communication mark possible but not for model or $\frac{840}{72}$
4 (a)	$\frac{\frac{10+20\times\frac{x}{60}}{1+\frac{x}{60}}}{1+\frac{x}{60}}$ oe for numerator	2	B1 for numerator or denominator seen	
(b)	Evidence of either multiplying top and bottom by 60 or common denominators of 60 oe.	1	R1	
5	11.7 to 11.8(km/h)	1	B1	Communication mark (can be evidence of substitution)
6		2	G1 correct shape G1 start at (0, 10)	
7	26 or better	2	M1 Sketch showing intersection of graphs M1 600 + 20x = 13(60 + x)	Communication mark for complete correct method shown or described. Reverse substitution statement does not gain communication

Page 5	Mark Scheme: Te	Mark Scheme: Teachers' version		Syllabus er
	IGCSE – May	/June 2010)	0607 73
			_	ann,
(a) (S	$S = \frac{600 + yx}{60 + x}$ oe	1	B1	Syllabus 0607 - = 8 Communication mark
(b) 3		2	M1 $\frac{600 + 24y}{60 + 24}$	$\frac{v'}{2} = 8$ Communication mark
			soi A1ft for at lea same level of difficulty	
(c) **		2	G1 decreasing from a point o the <i>y</i> -axis	
6			G1 <i>x</i> -axis asymptote	
· · ·		1	C1	Communication seen in two of questions 3, 5, 7, 8(b)