

WANN, PapaCambridge.com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/21 Paper 2 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	ge 2	Mark Scheme: Teache	on Syllabus		
		IGCSE – May/Jur	0607		
				am	
1 (a)	$5\sqrt{3}$		B1	3	
(b)	$\frac{5+\sqrt{3}}{11}$	$\frac{5+\sqrt{3}}{11}$ or $\frac{2(5+\sqrt{3})}{22}$ oe		Only allow denominators of 11 or 22. If B0 give M1 for intention of multiplying $5 + \sqrt{3}$	
	Final Answer			by $\frac{5}{5+\sqrt{3}}$	
2 (a)	Both 24	and 35	B1		
(b)	$n^2 - 1$ c	$n^2 - 1$ oe		If B0 give B1 for n^2 seen but no <i>n</i> term. i.e. $n^2 + k$ where k is an integer. [3]	
3 (a)	4		B2	If B0 give B1 for either $\pm 6x$ or ± 24 seen [2]	
4 (a)	$\begin{pmatrix} 16 \\ -3 \end{pmatrix}$		B2	Give B1 for each correct number	
(b)	5		B2	$\frac{\text{Not} \pm 5}{\text{If B0 give M1 for } (\pm 4)^2 + 3^2 \text{ [condone no brackets] which can be implied by } \pm 5 \text{ or } 25 \text{ [condone no brackets]}}$	
5 (a)	(x-4)(x-4)(x-4)(x-4)(x-4)(x-4)(x-4)(x-4)	x + 1) oe	B2	ISW for any solutions once correct factors seen, <u>but</u> any solutions without working score 0. If B0 give SC1 for signs reversed. Still ISW for any solutions.	
(b)	<i>x</i> < 1		B2	Condone \leq used throughout. If B0 give M1 for $12 - 2x$ or $5 < 6 - x$ or 5 = 6 - x seen. (x =) 1 ww is M0. [4]	
6 (a)	$A \cap B$		B1		
(b)	$B \cap A'$	oe	B1	E.g. $(A \cup B) \cap A'$ $(A \cup B')'$ [2]	
7 (a)	$\frac{36}{d^2} [C]$	ondone k/d^2 with $k = 36$ stated]	B2	If B0 give B1 for (F =) $\frac{k}{d^2}$	
(b)	4	liswei	B1ft	or $(F =) \frac{1}{kd^2}$ seen $[k \neq 1]$ Ft only from answers in the form	
				$\frac{k}{d^2} \text{ or } kd^2 \text{ or } \frac{k}{d} [k \neq 1]$ [3]	

Page 3		Mark Scheme: Teachers' version			Syllabus 7
		IGCSE – May/June	e 2011		0607 732
	1		1		PIN
8 (a)	For correct use of $n\log a = \log a^n$		M1	E.g. log	2^3 or log 8 or log 6^2 or log
	For corre	ect use $\log a + \log b = \log ab$	M1	Using th	neir figures
	or log <i>a</i>	$-\log b = \log \frac{a}{b}$			
	log 2	www3	A1		
(b)	$\frac{8}{27}$ or $\left(\frac{2}{3}\right)^3$ Final Answer		B2	If B0 giv or denor SC1 for	ve B1 for answers with numerator ninator 27 OR answers of
				$\frac{27}{8}$ or	$\frac{1}{\left(27/8\right)} \text{ or } \left(\frac{3}{2}\right)^{\pm 3}$
9	Clearing both denominators correctly to		M1	Condone	e $d(x-c)$ as denominator on <u>both</u>
	get $d^2 = 0$ Making :	(x + c)(x - c) or better. x^2 the subject of an equation with	M1	sides.	
	no denor Finding having x	minators. the square root of an equation 2 as the subject.	M1	Condone	e missing ±
	$(\pm)(c^2+$	(d^2) as final answer www3		Their fir www to	nal answer must be correct and score M3
10 (a)	12 - x, 1	11 - x, x - 3 oe	B1B1B1	SC1 for	Venn diagram with 7, 6 and 2 see
(b)	5		B2	If B0 sco their (x - their (12 seen	ored give M1 for (-3) = 2 or (2-x) + x + their $(11 - x) + 2 = 20$
				Seen.	[
11	120 and	240	B1B1		[
12 (a)	$y = 3\sin^2 x$	2x Final Answer	B2	If B0 giv	ve B1 for $3\sin(f(x))$ or $k\sin 2x$
(b)	Correct s	sketch	B2	If B0 giv (2) or co	ve SC1 for either correct amplitud prrect period (360°).