	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIO	WWW Atrapape
	International General Certificate of Secondary Education	
CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
CAMBRIDGE II	NTERNATIONAL MATHEMATICS	0607/06
Paper 6 (Extend	led)	May/June 2011
Candidatas ans	wer on the Question Paper	1 hour 30 minutes
Canuluales ans	wei un me guesnun rapei	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a pencil for any diagrams or graphs.

DO NOT WRITE IN ANY BARCODES.

Answer both parts **A** and **B**.

You must show all relevant working to gain full marks for correct methods, including sketches.

In this paper you will also be assessed on your ability to provide full reasons and communicate your mathematics clearly and precisely.

At the end of the examination, fasten all your work securely together. The total number of marks for this paper is 40.

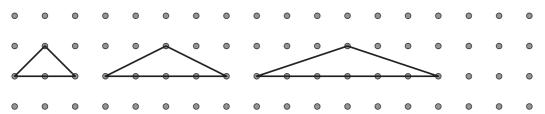
This document consists of 8 printed pages.

Answer both parts A and B.

INVESTIGATION Α

PICK'S EQUATION (20 marks)

You are advised to spend 45 minutes on part A.


Www.papaCambridge.com In 1899 the Austrian mathematician Georg Pick found a method to work out the area of any polygon that has its vertices on a square grid.

His method used the number of dots (p) on the perimeter of the polygon and the number of dots (i) inside the polygon.

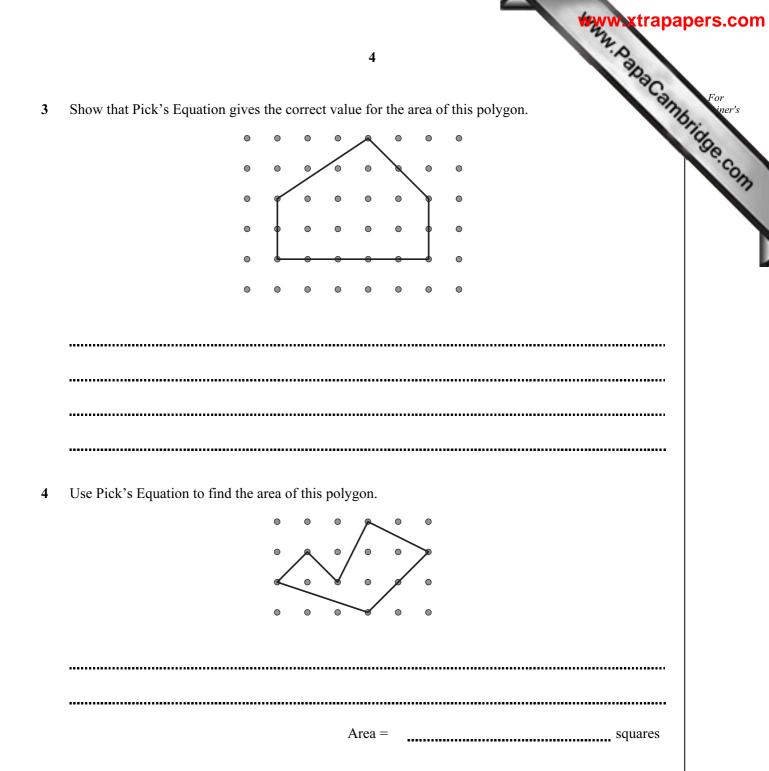
In the polygon shown, p = 7 and i = 4.

(a) The diagram below shows the first three triangles of a sequence with i = 0. 1

For the first triangle in the sequence p = 4. Its area is $A = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 2 \times 1 = 1$ square.

Complete the table for the first 6 triangles in this sequence.

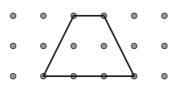
Area (A)	1			
Number of dots on the perimeter (p)	4	6		


(b) Find a formula for p in terms of A.

p =.....

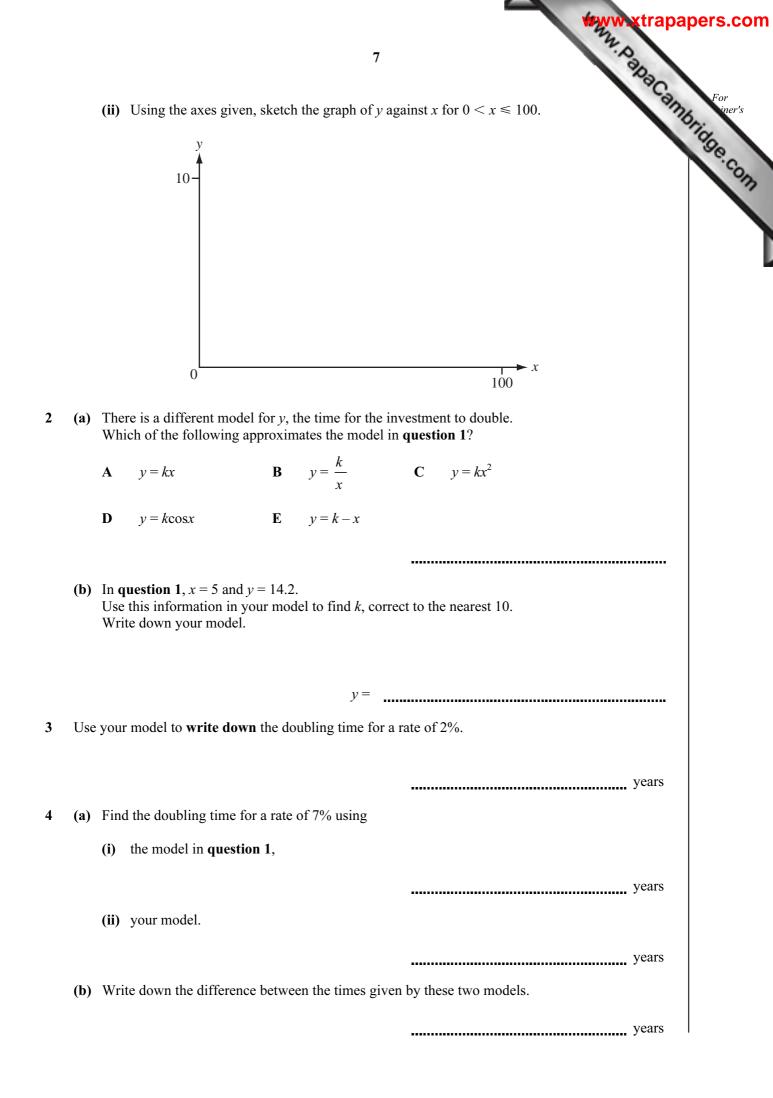
(c) Make *A* the subject of the formula.

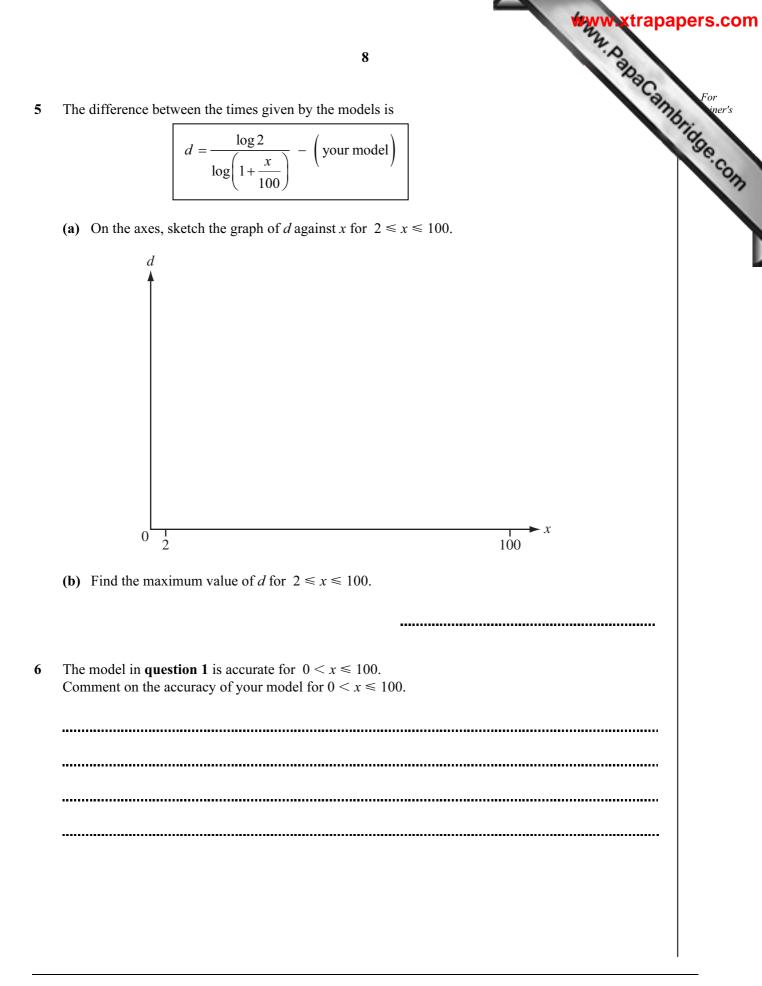
A =.....


Www.PapaCambridge.com 3 (d) Show that your formula for A gives the correct value of the area for this triangle. The diagram below shows a sequence of triangles, each with p = 4. 2 The number of dots (*i*) inside the polygon increases by one each time. 0 0 0 C C (a) The area of the first triangle is 1. Find the area, A, of each of the other three triangles. (b) Explain how the connection between the increase in *i* and the increase in *A* changes your answer in **question 1(c)** to give $A = \frac{1}{2}p + i - 1$. This is **Pick's Equation** which works for all polygons. (c) Write down the range of possible values for *p*.

- 5 A polygon has an area, A, of 4 squares.
 - (a) Using Pick's Equation, a possible pair of values for p and i is p = 6 and i = 2. Use Pick's Equation to find **all** the other possible pairs of values.

(b) The diagram below shows a quadrilateral with A = 4, p = 6 and i = 2.




Draw, on the square grid below, a quadrilateral with A = 4 for each of the pairs of values of p and i that you found in **part (a)**.

•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	۰	•	•	•	•	•	۰	۰	۰	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	۰	•	•	•	•	•	•	•	•	0	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	0	•	•	•	•	•	•	•	0	0	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•
•	0	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0	0	•	•	•	•	•	•	•	•	•	•	0	•	0	•	•
•	0	0	0	0	•	•	•	•	•	•	•	0	•	•	•	•

For iner's combines c

MODELLIN	G THE DOUBLING TIME (20 marks)
	6 THE DOUBLING TIME (20 marks) You are advised to spend 45 minutes on part B . sted at a rate of 5% compound interest per year.
\$1000 is inve	sted at a rate of 5% compound interest per year.
(a) (i) Exp	lain why, after 10 years, the total amount of money is \$1000 \times 1.05 ¹⁰ .
(ii) Cal	culate this total amount.
	\$
(b) Write do	wn the total amount of money after <i>y</i> years.
	\$
(c) (i) Wh sho	en y is the number of years it takes for the investment of \$1000 to double, w that $1.05^{y} = 2$.
	w how you can use logarithms to solve the equation $1.05^{\nu} = 2$ to give $y = 14.2$, sect to 3 significant figures.
	en the rate is $x\%$ (instead of 5%) show, by referring to question 1(c) , that the time to ble is given by the following model.
	$y = \frac{\log 2}{\log\left(1 + \frac{x}{100}\right)}$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of