

WANN, PapaCambridge.com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/31 Paper 3 (Core), maximum raw mark 96

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pag	e 2	Mark Scheme: Teache IGCSE – May/Jun		Syllabus 0607
			IGCSE – May/Juli		0007 30
L	(a)		A, B, C, D, K, L, M	1	stable.
	(b)		6	1	age.
	(c)		10%	2	Syllabus 0607 M1 for 2/20 seen
	(d)		$\frac{5}{20}$ oe isw any cancelling or converting	g 1	
	(e)		$\frac{6}{13}$ o.e isw any cancelling or converting	g 1	
			(0.462 or 0.4615)		[6]
2	(a) ((i		7000 ÷ 100 × 33 Mr Ray \$2450, Dr Surd \$2240	M1 M1 B1 B1	or M1 for 2310 and 7000 ÷ 70 seen o.e (allow 231 and 700 ÷ 7) then M1 ratio 33 : 100
	(b)		105	1	
	(c)		920 ft	1ft	<i>their</i> 2240 – 1320, ft positive answers only
	(d)		1715 ft	2ft	M1 for $70/100 \times their 2450$ oe [8]
3	(a)		x = -1, y = 2 with working	3	M1 for attempt to get 2 equations for elimination. Condone one numerical slip. OR M1 for equations in the form $y = \text{ or } x = .$ Condone one numerical slip. OR M1 for sketch. A1 each answer Trial and improvement with both answers correct scores 3, otherwise 0. SC1 for correct answers without working
			$2\pi r(r+h)$ final answer	2	M1 for any correct partial factorisation or $2\pi r($)
	(i	ii)	$h = \frac{s - 2\pi r^2}{2\pi r}$ of final answer	2	M1 for correct re-arrangement seen M1 for correct division by $2\pi r$ seen
	(c)		$6x^3$	2	B1 for kx^3 or $6x^k$ [9]

	Page 3	3 Mark Scheme: Teacher IGCSE – May/June	Syllabus 0607 Birth Cannon Birth Cannon Birt	
ļ	(a)	Points plotted correctly	B1B1	emphilitic
	(b)	(3, 5)	1	Se
	(c)	$\begin{pmatrix} 2\\4 \end{pmatrix}$	1	condone poor notation
	(d)	2 oe	2	M1 for change in <i>y</i> over change in <i>x</i> . Allow $4/2$
	(e)	2 ft	1ft	ft (d) only
	(f)	y = 2x - 7 oe	2ft	M1 for $y = their 2x + c$ or for substituting (5, 3) into formula [9
	(a) (i)	24	1	
	(ii)	56 – 57 kg	1	
	(iii)	9 (allow +/- 0.5) www	2	M1 for 59 (+/- 0.5) or 50 to 51 seen
	(b)	$\frac{8}{24}$ or $\frac{9}{24}$ oe ft	2ft	M1 for 8 or 9 seen ft from (a) [6]
	(a) (i)	trapezium	1	
	(ii)	51	1	
	(iii)	82	1	
	(iv)	129	1	
	(b)	108	3	M2 for 540/5 seen or $180 - 360/5$ M1 for $(5 - 2) \times 180$ oe or $360/5$ [7]

	Page 4	Mark Scheme: Teachers' version		Syllabus
		IGCSE – May/June 20	012	0607 230
7	(a) (i)	90	1	and.
	(ii)	90	1	1000
	(iii)	110	1	Syllabus 0607 Brand Brand
	(b)	10.2 (accept 10.17 – 10.18)	2	Allow 2 for other arc = 23.1 or 23.11 – 23 13 M1 for $110/360 \times 2\pi \times 5.3$ or $250/360 \times 2\pi \times 5.3$
	(c)	6.08 (accept 6.079 – 6.080)	2	M1 for $\sin 35 = CB/10.6$ oe (i.e. all steps, apart from final one) [7]
8	(a) (i)	6	1	
	(ii)	108	2ft	M1 for full perimeter seen
	(b)	571 or 571.2	2	M1 for 30 × 18 [5
)	(a)	46(.0) (accept 45.95 – 46.0)	2	M1 for $\frac{2}{3} \times \pi \times 2.8^3$ or $\frac{4}{3} \times \pi \times 2.8^3$
	(b)	49.2 or 49.3 (accept 49.23 – 49.27)	2	M1 for using $2\pi 2.8^2$ or $4\pi 2.8^2$
	(c)	10.2 (accept 10.19)	2	M1 for $9.8^2 + 2.8^2$
	(d)	89.6 or 89.7 (accept 89.59 – 89.74)	2 ft	M1 for $\pi \times 2.8 \times$ their 10.2 ft their (c)
	(e)	7	2	M1 for $\frac{2}{2.8}$ or $\frac{2.8}{2}$ or $\frac{9.8}{2.8}$ [10]
10	(a)	Diagram	B1B1	1 mark for roughly the correct shape 1 indep mark for the information (at least 3 out of 4 correct)
	(b)	(0)51.8 accept (0)52 but only with working	4	M1 for recognizing the 90 angle – may be marked on diagram. M1 for tan = $\frac{80}{200}$ or better (first M1 is
				implied) 21.8 seen implies first 2 M's M1 for adding 30. [6]

	Page				Syllabus 7	
			IGCSE – May/June 2	012	0607 232	
1	(a)			Syllabus 0607 0607 0607 000 000 000 000 000 000		
	(b)	(-2, 1)	and (1, -0.35)	3 B1 B1	 B1 for cubic shape with a max and a min B1 for turning points in the correct quadrants. B1 for <i>x</i>-axis intercepts: one negative, one positive and one at origin. SC1 for correct points in wrong order 	
	(c)	x = 0, 1	1.81 (1.811 to 1.812)	B1 B1		
	(d)	their gr	raph moved up 3	1	their graph with vertical translation of 3 [8]	
2	(a)	3820 (a	accept 3817)	1		
	(b)	3800		1		
	(c)	$\frac{3}{7}$		2	M1 for 15/35	
	(d) (i)	Positiv	e	1		
	(ii)	Ruled	line drawn through (180, their 3820)	2 ft	B1 for passing through mean, B1 for positive gradient.	
	(iii)	3300 -	3500	1	[8]	

www.xtrapapers.com

Page		Syllabus	
	IGCSE – May/June 20	12	0607 732
13 (a)		2	Syllabus 0607 B1 for reasonable shape with e graph in approximately the correc One branch above and one branch b <i>x</i> -axis Top branch not touching <i>y</i> -axis Bottom branch cutting <i>y</i> -axis Penalty of 1 if branches connected.
(b)	x = 2, y = 0	B1 B1 ft	ft $\frac{3}{x} - 2$ only $x = 0, y = -2$
(c)	Line on graph	1	Ruled line must have positive gradient and negative <i>y</i> -intercept
(d)	(0.697, -2.3(0)) (0.6972, -2.303 to -2.302), (4.3(0), 1.3(0)) (4.302 to 4.303, 1.302 to 1.303)	B1 B1	ft $\frac{3}{x}$ - 2 only (-1.3(0), -4.3(0)) (-1.303 to -1.302, -4.303 to -4.302) (2.3(0), -0.697) (2.302 to 2.303, -0.6972) [7]