

WANN, PapaCambridge.com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/33 Paper 3 (Core), maximum raw mark 96

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.xtrapapers.com

	Page 2	Mark Scheme: Teachers		Syllabus 7.0	r	
	J.	IGCSE – May/June 2012			0607	
					.C.	2
1	(a)	11 15	2	B1 for 11:	50 or 3hrs 5 mins seen	Abrido
	(b)	17 50	2	B1 for 21:	50 or 10:20 seen	Anbridge .com
	(c)	8192	3		× 1600) × 1.28 oe 1600 × 1.28 oe A1 for 20	
	(d)	545.45	2	M1 for 30 or 545.45.	00 ÷ 5.50, implied by 545	or 545.5 [9]
2	(a) (i)	0.2 oe	1			
	(ii)	0.64 oe	2	M1 for 0.8	3×0.8 oe	
	(b) (i)	56	1			
	(ii)	57	1			
	(iii)	58	1			
	(iv)	5147	1			
	(c)	57.8 or 57.77 to 57.78	2	M1 for ev	idence of using midpoints	[9]
3	(a)	150	4	M1 for 9 > M1 for ½	\times 5, M1 for $\frac{1}{2} \times 15 \times 8$, $\times 10 \times 9$	
	(b) (i)	13.5 (13.45)	2	M1 for 10	$^{2} + 9^{2}$	
	(ii)	72.5 (72.45) ft	2ft	ft 59 + the M1 for 17	ir (b)(i) + 10 + their 13.5 + 10 + 5	+ 9 + 8 [8]
4	(a)	Reflection (only) x = -1	B1 B1	Any indica	ation of second transformat	tion gets 0
	(b)	Rotation (only) 90° clockwise oe (3, 1)	B1 B1 B1	Any indica	ation of second transformat	ion gets 0
	(c)	Δ at (3, -4), (-1, -4), (-1, 2)	2	correct ori	v enlargement scale factor 2 entation argement centre (3, 6)	2 with [7]

Page 3		Mark Scheme: Teachers' version IGCSE – May/June 2012		Muta SyllabusSyllabusr06070607M1 for $400 \div 43.18$ 0.000M1 for $2 \times 75 + 2 \times \pi \times 30$
= (-)			
5 (a	a)	9.26 (9.263 to 9.264)	2	M1 for 400 ÷ 43.18
0	b) (i)	338 or 339 (338.4 to 338.6)	2	M1 for $2 \times 75 + 2 \times \pi \times 30$
	(ii)	$r = \frac{D - 2s}{2\pi} $ oe	2	M1 for correct re-arrangement M1 for correct division by 2π
	(iii)	$\frac{400 - 2 \times 85}{2 \times \pi}$	1	answer given [7]
6 (:	a)		2	Good curve with minimum point. -1 for poor curve e.g. y intercept \emptyset 0 either x intercepts \emptyset 0 (or both) too symmetrical
()	b)	(1.38, -2.35) (1.379, 2.345 to 2.346)	1, 1	SC1 for (1.4, -2.3)
(2)	y = 4x - 5 drawn and ruled	D2	B1 for positive gradient and <i>y</i> intercept < 0 B1 cuts curve twice
(d)	0.833 (0.8330) 2.69 (2.690)	1 1	SC1 for 0.83 and 2.7 [8]
7 (:	a) (i)	9.22 (9.219 to (9.220)	3	M2 for $\sqrt{(11^2 - 6^2)}$ or M1 for $h^2 + 6^2 = 11^2$ oe
	(ii)	348 or 347 (347.3 to 347.7)	2ft	M1 for $\frac{1}{3} \times \pi \times 6^2 \times$ their (a)(i)
()	b) (i)	207 (207.2 to 207.4)	2	M1 for $\pi \times 6 \times 11$
	(ii)	433 or 434 (433.0 to 433.7)	3ft	M2 for $2 \times \pi \times 6^2$ + their 207 or M1 for 4(or 2) $\times \pi \times 6^2$ [10]

www.xt	rapapers.com
20	

	Dage 4	Mark Sahamai Tasahara'	version	Cullaburg 7.0 r
\vdash	Page 4 Mark Scheme: Teachers' IGCSE – May/June 20			Syllabus 0607
				0007 30
8	(a) (i)		2	Syllabus 0607 B1 Good curve with two branches B1 top branch not crossing x-axis an bottom branch crossing both axes penalty of 1 if branches joined
	(ii)	(-3,0)	1	
	(iii)	(0, -1.5)	1	
	(iv)	<i>x</i> = 2	1	
		y = 1	1	If 0 scored, SC1 for $y = 2$ and $x = 1$
	(b) (i)		1	Parabola with min point approx $(-3, 0)$
	(ii)	Translation (only)	1	Any indication of second transformation gets 0
		$\begin{pmatrix} -3\\ 0 \end{pmatrix}$	1	
_				[9]
9	(a) (i)	7.52 (7.517 to 7.518)	2	M1 for 8 cos 20 oe
	(ii)	2.74 (2.736)	2	M1 for 8 sin 20 oe If 0 scored SC2 for reversed answers
	(b) (i)	12.52 (12.51 to 12.52), 8.74 (8.736)	1ft	ft their $(a) + 5$, their $(b) + 6$
	• •	(0)55.1 (55.06 to 55.1) or (0)55 but not without working	3	M2 for tan θ = their $\frac{12.52}{8.74}$ or M1 for tan θ = their $\frac{8.74}{12.52}$ + M1 for 90 – θ [8]
				լօյ

www.xtrapapers.com

	Page 5					Syllabus Syllabus
`			IGCSE – May/June 2012			0607
					1	C2
10	(a)	3 poi	ints plotted correctly	2	± smal	ll square, B1 for 2 correct
	Ì,					10
	_ \				ĺ	Se.
	(b)	Nega	itive	1	ĺ	Syllabus 0607 Il square, B1 for 2 correct
		1		l l		
	(c)	19.2		1		
		1		1		
		(thai	$= 10.2 (7.2) = 1_{0.440}$	1ft		
	(d)	(then	r 19.2, 67.2) plotted	111	ĺ	
	ļ	1				
	(e)	ruled	l line drawn through there (d, t)	1		have -ve gradient and at least 3 points on
		1		l l	either s	side.
	(f)	strict	t ft read from their line at 36	1		[7]
11	(a) (i)	27, 3	1	1, 1		
	(ii)	4 <i>n</i> +	2	2	D1 for	t 4n or kn + 3 seen
	(11)	4 <i>n</i> -	3	<u> </u>	D1 101	f 4n or $kn + 5$ seen
	ļ	1				
	(b)	n^2		1	ĺ	
	ļ	1			ĺ	
	(c) (i)	63		1	ĺ	
					ĺ	
	(ii)	$n^{2} + i$	4n+3 oe ft	1ft	e.g. (<i>n</i>	$(a + 2)^2 - 1$ ft their (b) + their (a)(i) [7]
12	(a) (i)	20°		2	B1 for	r angle $BOA = 124$ or M1 for $56 - 36$
	(ii)	36°		1		
	(jij)	50°		1	ĺ	
	(11)	50			ĺ	
	(iv)	30°		1ft	ft 50 –	- their (a)(i)
	ļ	1		1		
	ļ	1				° 1 <i>CO</i>
	(b)	5.7 ci	m	2	M1 for	or $\frac{8.1}{5.4} = \frac{CO}{3.8}$ oe [7]
<u> </u>		<u> </u>				3.4 3.0