

WANN, Papa Cambridge.com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06 Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.xtrapapers.com

Page 2 Mark Scheme: IGCSE – M				Syllab 0607	ous ⁷ .0	log 1
A INVES	STIGATION ADDITION TR	RIPLES				Cannot .
1	(1, 2, 3)(1, 3, 4)(1, 4, 5) (2, 3, 5)(1, 5, 6) (2, 4, 6)(1, 6, 7) (2, 5, 7)	2	B1 for 6 or 7	First two n	umbers can b	e swapped
2	(1, 2, 3) (1, 3, 4)		B1			
	(1, 2, 3)(1, 3, 4)(1, 4, 5) (2, 3, 5)		B1 cao			
	(1, 2, 3)(1, 3, 4)(1, 4, 5) (2, 3, 5)(1, 5, 6) (2, 4, 6)		B1 cao			
	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5) (1, 5, 6) (2, 4, 6) (1, 6, 7) (2, 5, 7) (3, 4, 7) (1, 7, 8) (2, 6, 8) (3, 5, 8)	4	B1	setting: asc triple and f	ation for syst ending order irst or last nu repeating pr	within each mbers in
3			13 14 15 36 42 49	2	B1 for 3	ft the numbers from their table unless wrongly counted.
4	3 5 7 9 11 13 1 4 9 16 25 36					No marks awarded here

trapapers.com
trapapers.com

www.xtrapapers.com

	Page 4	Mark Scheme	: Teache	rs' version	Syllabus
		IGCSE – I		0607 203	
					Can
6	(a)	2500	2	M1 50 soi	Syllabus 0607rCommunication: $\frac{100}{2} = 50$ or $\frac{101}{2} = 50.5$ and $50^2 = 2500$ or $50 \times 50 = 2500$ OR substitution in formula seen
		215			
	(b)	215	2	M1 107 soi	Communication: $\sqrt{11449} = 107$ and $107 \times 2 = 214$ OR Solving $0.25n^2 - 0.5n + 0.25$ = 11449 by graph or the quadratic formula OR solving an expression = 11449 using steps.
					OR $\sqrt{11449 \times 2} + 1$
	(c)	$\left(\frac{n-1}{2}\right)^2$ oe	2	SC1 $\frac{n-1^2}{2}$	Other forms e.g. $0.25n^2 - 0.5n + 0.25$; $\left(\frac{n}{2} - \frac{1}{2}\right)^2$; $\frac{(n-1)^2}{4}$
				or $(n-1\div 2)^2$ or $(n-1/2)^2$	$\left(\frac{1}{2}, \frac{1}{2}\right)$; $\frac{1}{4}$ Allow use of x for n
				or $\frac{n-1^2}{4}$	SC0 $n - 1 \div 2^2$ (two errors in writing)
7	(a)	2450	1		Communication: their $6(a) - 50$ OR $49^2 + 49$ OR 50×49
	(b)	74	1		Communication: $\sqrt{1332} = 36.5$ and $37^2 - 37$ OR 37 × 36 OR $36^2 + 36$ OR 37×2 OR Solving $0.25n^2 - 0.5n = 1332$ by graph or quadratic formula
	(c)	$\left(\frac{n-2}{2}\right)^2 + \left(\frac{n-2}{2}\right) $ oe	2	SC1 as in 6(c) (one bracketing error)	Other forms e.g: $0.25n^2 - 0.5n$ $\left(\frac{n}{2}\right)^2 - \left(\frac{n}{2}\right); \left(\frac{n}{2}\right)\left(\frac{n}{2} - 1\right);$ $\frac{n(n-2)}{4}; \frac{n^2}{4} - \frac{n}{2};$ $\left(\frac{n}{2} - 1\right)^2 + \left(\frac{n}{2} - 1\right)$
		Communication	2	B2 for 2 B1 for 1	$\begin{array}{c} (2 & 1) & (2 & 1) \\ \hline \\ Communication seen in questions 2, \\ 5, 6(\mathbf{a})(\mathbf{b}), 7(\mathbf{a})(\mathbf{b}) \end{array}$
		[Total: 23] Scaled total 20		101 1	

Page 5 Mark Scheme: IGCSE – M				SyllabusSyllabus0607Accept $4 + 9$ Accept 0.832 or $\frac{3}{3.6}$ or better
B MODE	LLING REGIOMONTA	NUS' STAT	ГИЕ	amb
1 (a) (i)	$3^2 + 2^2$ seen	1		Accept 4 + 9
(ii)	$\frac{3}{\sqrt{13}}$ oe	1		Accept 0.832 or $\frac{3}{3.6}$ or better
(b)	$3^2 + 1^2$ seen	1		
(c)	$\sin A = \frac{3}{\sqrt{10}\sqrt{13}}$	1		Substitution in the Sine Rule must be seen or implied
				Accept $\sin 56.3^{\circ} \times \frac{1}{\sqrt{10}}$ or
				$\frac{0.832}{\sqrt{10}} = 0.263 = \frac{3}{\sqrt{130}}$
2	$\frac{1}{\sqrt{10}}$ oe isw			Accept 0.31 to 0.325. Accept
	$\sqrt{10}$		B1 [AB] = $\sqrt{5}$ soi	3.16
			B1 $[AB] = \sqrt{3}$ sol B1 $[AC] = \sqrt{2}$ soi	Allow $\sqrt{5} = 2.2$ and $\sqrt{2} = 1.4$
		3	B1 $\frac{1}{\text{their } AB \times \text{their } AC}$	Incorrect answers must be accurate to 2 decimal places
				Communication: Pythagoras and Sine Rule (even if arithmetical errors)
3	$AB = \sqrt{x^2 + 2^2}$		M1	Assume AB = if clear from the
	or $AB = \sqrt{x^2 + 4}$		M1	diagram. Accept $AB^2 = x^2 + 4$
	$AC = \sqrt{x^2 + 1^{[2]}}$			Assume $AC =$ if clear from the diagram. Accept $AC^2 = x^2 + 1$
	$\sin A = \frac{\sin B}{b} = \frac{\sqrt{x^2 + 4}}{\sqrt{x^2 + 1}}$ 3	M1 dependent	Sine Rule must be seen or implied	
	or $\frac{x}{\sqrt{x^2+4}} \frac{1}{\sqrt{x^2+1}}$			OR accept $\frac{x}{\sqrt{x^2 + 4}\sqrt{x^2 + 1}}$ if
				square roots used Question 1 and 2.

Mark Scheme: IGCSE – N			Syllabus 0607	ers.com
	2	G1 increasing from (0,0) to any single max lying on the left half of the grid G1 decreasing & concave upwards after max. Not touching axis.	Syllabus 0607 Allow 2 mm distance to the origin along either axis	nge con

		[Total: 20]			
		Communication	1		Seen in question 2 or 5(a)
					$\sqrt{(x^2 + 1)(x^2 + h^2 + 1)}$ 18.7° and 0.08 or 0.09 SC1 38.1° and 1.5
					$\frac{xh}{\sqrt{\left(x^2+1\right)\left(x^2+h^2+1\right)}}$
					SC1 19.5° and 3.5
					no change and 1.73
					$\frac{xh}{\sqrt{\left(x^2+1\right)\left(x^2+h^2\right)}}$
					xh
					SC1 14.5° and 1.73
				to 1.75	$\sqrt{(x^2 + 1)(x^2 + (n + 1)^2)}$ 5° and 0.3
				SC1 30° and 1.7	$\frac{x}{\sqrt{(x^2+1)(x^2+(h+1)^2)}}$
	(ii)	[increases by] 0.3[m]		B1 for each	ft if one of the following in part (a)
	(b) (i)	[increases by] 10.5° to 11°	2	uenominator	
		$\sqrt{(x^2+1)(x^2+(h+1)^2)}$		B1 correct denominator	Communication: Pythagoras & Sine Rule
5	(a)	$\frac{xh}{\sqrt{(x^2+1)(x^2+(h+1)^2)}} $ oe	2	numerator	form.
5	(a)	$[\sin BAC =]$	2	B1 correct	Denominator must have the correct
	(c)	between 19° and 19.5°	2	M1 [sin A =] 0.33 or better	SC1 if 0.33 seen in part (a) or (b).
	(b)	1.4 to 1.42 [m]	1		
	()			touching axis.	

Page 6

4 (a)

•200