CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Www.strapapers.com MARK SCHEME for the October/November 2012 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06

Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.xtrapapers.com

IGCSE – October/November 2012 0607	Page 2	Mark Scheme	Syllabus r
		IGCSE – October/November 2012	0607

A I	NVES	STIGATION STRAIGHT LINES			Statt.		
1		parallel	1		age.		
2	(a)	• • • • • • • • • • • • • • • • • • •	1	4 lines and 3 points C	If arrows on parallels condone non-parallel lines once, otherwise 'parallel' lines must not meet inside the answer		
	(b)	\rightarrow o.e.	1	4 lines and 4 points C	space. If arrows on non- parallels condone once.		
	(c)		1	4 lines and 5 points C	Allow diagrams where crossing points coincide Communication opportunity for parallel arrows drawn correctly on any one diagram		
	(d)		1	4 lines and 6 points			
3	(a)	cross all lines o.e.	1	 'other lines' 'through all lines' 'cuts at 4 (distinct) points' 'not parallel to any if the others' 	Ignore extra statements Statements about triangles are insufficient Distinct points, if not indicated here must be shown on diagram in (b)(i)		
	(b)	(i) 	1	5 lines and 10 points	Allow freehand lines but must not imply another intersection		
		(ii) 10	1FT	FT for 5 lines only			

	www.xtrapapers.com
cheme	Syllabus r
/November 2012	0607
	C

	Pag	e 3			<u> </u>		lark					_		Syllabus	i ba
				IG	CSE	-0	ctob	er/N	ovei	mbe	r 201	2		0607	"ac
4	(a)	Numbe lines Maxim numbe crossin points	um r of	1	2	3	4	5 10	6 15	7 21	8 28	9 36	3	B1 for 1 B1 for 21 B1 for 36	A. Papacambridge.co
	(b)	odd + even = odd odd + odd = even even + even = even even + odd = odd									R1		<u> </u>		With or without numbers Statement any order
5	(a)	$\frac{1}{2}n^2 - \frac{1}{2}$	√2 n (or	Y∕2 n (<i>n</i> – 1) 0.	e.			3	M1 method that would lead to a correct answer B1 $\frac{1}{2} n^2$ SC2 $\frac{1}{2} n^2 + \frac{1}{2} n$ o.e. without working			e.g. difference method as far as kn^2 or 2 substitutions seen 'number of lines' $\equiv n$
	(b)						1	-			e.g. $\frac{1}{2} \times 10 \times 9 = 45$ $\frac{1}{2} \times 100 - \frac{1}{2} \times 10 = 45$				
	(c)						1			nity for vorking	Attempt at factorising Attempt at use of formula Graph/sketch drawn Extend table – 10 to 16 inclusive Trial & Improvement – two cases seen including 16				
	(d)	Evidence of method e.g. sketch, attempt at factorising, attempt at use of formula, solution of quadratic (33 and 34 or 1056 and 1122), substitution of 34 and 35 (561 and 595), followed by No									M1 A1	quad term SC1 follo n = 3 SC1 and 3 SC2	Corree wed b 34.8 34 an 595 ar	and No d 561, 35 d No nd No with	
											1	C1			Communication seen in one of 2(a or b or c) or 5(c)
									Tota	al	20				

		www.xtrapapers.com
Page 4	Mark Scheme	Syllabus r
	IGCSE – October/November 2012	0607

1	(2)			ם ב-	r 6	or 5 correct	196
1	(a)	7 or 8 correctly plotted points from table	3	points	s or 4 c	or 3 correct	Cambridge
	(b)	2.3 (seconds)	1				Coordinates not accepted
	(c)	(i) Time (seconds) 1 0 50 100 150 200 250 Length (cm) This shape curve through approx. (100, 2		50	1	C opportunity for smooth curve	Curve should ignore incorrectly plotted points Correct polygon = 1 (no C1)
	<u>†</u>	(ii) 1.9 – 2.1 (seconds)	1FT	FT <i>their</i> curve if answer outside range			
2	(a)	$T = aL^b$	1				
	(b)	(i) $1.4 = a \times 50^{b}$ and $2.8 = a \times 200^{b}$ then <i>a</i> eliminated OR $1.4 = a \times 50^{\frac{1}{2}}$ and $2.8 = a \times 200^{\frac{1}{2}}$ show both giving $a = 0.197(0.2)$ OR substitute $b = \frac{1}{2}$ in one equation to find <i>a</i> and then substitute $a = 0.197(0.2)$ into other equation to get $b = \frac{1}{2}$ OR Find $a = 0.2$ in (b)(ii) OR incorrect use of correct model in (b)(ii) giving a = 0.04 or better then substitute twice with $L = 50$ and L = 200	2	M1el M1su M1 sl equal M1 fi substi M1 su	imir ıbsti how indir itutio ubst	itution nation itution ving both a ng a by on titution of a	
	+	(ii) 0.2	2FT	- sub correc	stitu ct pc	olete method ation of any oint prrect to 1 dp	M1FT <i>their</i> model using $b = \frac{1}{2}$ and values given B1FT $a = 0$

www.xtrapapers.com

	Page	e 5	Mark Scheme	Syllabus 7				
			IGCSE – October/Nover	mber 201	2		0607	1020
		T =	= $0.197(0.2)L^{0.5}$ = $0.197(0.2) \times 250^{0.5}$ = 3.1 or = 3.2	1FT 1	mod thein M1	FT lel w r a a for a	for <i>their</i> written with and $b = \frac{1}{2}$ substitution 3.1 (3.2)	M1 FT for the set of $T = aL^b$ with the set of T = aL^b with the set o
	(c)	(i) (<i>L</i>	=) 400	1FT	mod	lel d	r a in their lependent on 1 in 2(b)(iii)	FT for incorrect use of $T = aL^b$ with <i>their</i> a
			$= 0.2 \times 100^{1/2}$ = 2	1	0.2/ lead	stitu 0.19 ling	tion of 98/0.197	
3	(a)	Time (seconds	Eength (m)				From (0, 0) to approx. (10, 6.4) with this shape C opportunity for smooth curve matching function	Within 2 mm from (0, 0) Watch for joining plotted points that wavers
	(b)	OF	$\frac{L \div 100)}{R}$ $\frac{L \times 100)}{L \times 100)}$	1		1		
		OF	$T = 0.2L^{0.5} = \frac{\pi}{5}\sqrt{\frac{L}{9.8}}$ $\frac{\pi}{5 \times \sqrt{9.8}} = 0.2$ $\sqrt{L} = L^{\frac{1}{2}} \text{ o.e. soi}$ R 3 substitutions in each model ring close values	2	coef	ficio con	parison of	Or M1 sketching graphs correctly with correct scales Dependent M1 for comparison of graphs
				1	C1			Communication seen in one of 1(c)(i) or 3(a)
			Tota	al 20				
			Final tota	al 40				