

MARK SCHEME for the May/June 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41

Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page	2 Mark Scheme			Syllabus r	
		IGCSE – May/June 2013		0607 202	
				Č.	
1 (a) (i)	\$18 00	0	3	M2 for 15840 ÷ 0.88 or M1 for 15840 = 88%	
(ii)	\$10 80	0 or 10790 to 10800	3	Syllabus r 0607 n M2 for 15840 \div 0.88 or M1 for 15840 $=$ 88% M2 for 15840 \times 0.88 ³ or their 0.88 ⁴ or M1 for 15840 (or 18000) \times 0.88 ⁿ , $n > 1$	
(iii)	2020		2	M1 for multiplying by 0.88, 3 more times or $15840 \times 0.88^n = 5000$ o.e. soi by 9.02 or 5010 to 5014 or 4410 to 4413 or SC1 for 2021.	
(b)	18.2 or	(18.15 to 18.16)	4	M3 for (20000 ÷ 15 × 0.68 + 950 + 1020) ÷ 15840 soi by figs 18159 to 18161 M2 for 20000 ÷ 15 × 0.68 + 950 + 1020 (2876 to 2877) M1 for 20000 ÷ 15 × 0.68 (906 to 907)	
2 (a)	Reflect	ion	1	Second transformation loses all marks	
	y = -x	o.e.	1	Independent	
(b) (i)	Triang	le vertices (3, -1), (5, -1), (5, -2)	2	B1 for 2 vertices correct or rotation 180° about other centre	
(ii)	Triang	le vertices (0, -2), (4, -2), (4, -4)	2FT	B1 FT for 2 vertices correct or enlargement s.f. 2 correct orientation	
(iii)	Enlarg	ement	1	Second transformation loses all	
	s.f2		1	marks	
	centre	(2, 0)	1	All independent	

Page	e 3 Mark Scheme		Syllabus Syllabus
	IGCSE – May/June 2013		0607
			and and a second second
3 (a)		2	Syllabus 0607 B1 for correct cubic shape B1 for max on $x = 0$ and $2 + ve$ <i>x</i> - intercepts
(b)	-0.732 or -0.7321 to -0.7320, 1, 2.73 or 2.732	2	B1 for any one solution
(c) (i)	(0, 2), (2, -2)	2	B1 for each
(ii)	-2 < k < 2	2FT	FT (c)(i) Allow $-2 < k$ and $k > 2$ full marks SC1 for $-2 \le k \le 2$ or better or in words
(d)	Sketch of line Indication that it only cuts curve once	1 1	
4 (a)	30/cos65 = 70.986 (Answer Given)	2	M1 for $\cos 65 = 30/QC$ o.e. If using Pythagoras must reach <i>their</i> $PC^2 + 30^2$
(b)	$\sqrt{(70.99^2 + 20^2 - 2 \times 70.99 \times 20 \times \cos 115)}$	M2	Allow correct use of cosine rule in other triangles for M2 or M1 M1 for $(70.99^2 + 20^2 - 2 \times 70.99 \times$
	81.5 or 81.48 to 81.50	A1	$20 \times \cos 115$) If 0 scored SC1 for answer in range without Cosine rule
(c)	457 or 457.3 to 457.5	1FT	FT 212.97 + 3 × <i>their</i> (b).
(d)	64.3 or 64.4 or 64.33 to 64.36		M1 for tan $65 = x/30$ o.e. (M mark may be seen earlier)
(e)	1790 or 1800 or 1790 to 1796 www2	2FT	FT for $\frac{1}{2} \times [their (d)(i)]^2 \times \sin 120$ o.e. M1 FT for $\frac{1}{2} \times [their (d)(i)]^2 \times$
		ĺ	2
			M1 FT for $\frac{1}{2} \times [their (d)(i)]$ sin 120 o.e.

Page	4	Mark Scheme IGCSE – May/June 2013		Syllabus 700 r 0607
5 (a)	x = 4 dra Line from	m $(0, 15)$ to $(6, 0)$ (if extended) awn m $(0, 12)$ to $(12, 0)$ (if extended) R clearly identified cao	2 1 1 1	Syllabus 0607 Lines must be long et define region B1 for line through either p with negative gradient.
(b) (i)	7 cao		1	
(ii)	9 cao		1	
6 (a)	89.7 or 8	39.657 to 89.66	3	M2 for $(50 - \frac{1}{2}\pi \times 3^2) \times 2.5$ or $10 \times 2.5 \times 5 - \frac{1}{2}\pi \times 3^2 \times 2.5$ or M1 for $\frac{1}{2}\pi \times 3^2$ or $10 \times 2.5 \times 5$
(b)	71.7 or 7	71.8 or 71.72 to 71.76	1FT	FT for <i>their</i> (b) \times 0.8
(c)	155 or 1:	55.2 to 155.3	5	M1 for $2 \times 2 \times 2.5 + 10 \times 2.5$ o.e. (horizontal rectangles) (35) M1 for $2 \times 2.5 \times 5$ (vertical rectangles) (25) M1 for $10 \times 5 - \frac{1}{2} \times \pi \times 3^2$ o.e. or better (front face) (35.86 or 71.7) M1 for $\frac{1}{2}\pi \times 6 \times 2.5$ o.e. (arch) (23.56)

			www.xtrapapers.c	
Page	5 Mark Scheme		Syllabus 7.0 r	
•	IGCSE – May/June 2013		0607	
			Can l	
7 (a) (i)	38	1	76,	
(ii)	32	2	Syllabus r 0607 0607 M1 for clear reading off at 105 0607	
(b) (i)	33, 53, 85, 115	2	B1 FT for any 2	
(ii)	8 points plotted Joined by smooth curve	2FT 1FT	B1 FT for 5 or more correct All marks depend on frequencies increasing	
(iii)	Comparison of speeds or spreads (ranges)	1	SC2 for comparison of speeds and	
	Justification referring to median or inter-quartile range	1	spreads without reasons Mark the best provided there is no contradiction	
(iv)	59.1 or 59.05	2	M1 for at least two midpoints (25, 35, 42.5, 47.5, 55, 70, 90) soi at least 2 correct products (150, 420, 637.5, 950, 1760, 2100, 2250) or total 8267.5	
(v)	Bars of correct width Bars correct heights 3, 4, 3.2, 1.5 and 1.25	1 3	Allow freehand B2 for 4 correct or B1 for 2 correct SC3 for "correct" but interval 40 to 45 and 45 to 50 combined with height of 3.5	
8 (a)	42 or 0.0423 or 0.04233 to 0.04234 o.o.	2	In all parts accept decimal / % to 3sf but not ratios or words etc. M1 for $\frac{7}{32} \times \frac{6}{31}$ o.e.	
o (a)	$\frac{42}{992}$ or 0.0423 or 0.04233 to 0.04234 o.e.	2	$\frac{1}{32} \times \frac{1}{31} \text{ o.e.}$	
(b)	$\frac{112}{306}$ or 0.366 or 0.3660o.e.	3	M2 for $\frac{4}{18} \times \frac{14}{17} + \frac{14}{18} \times \frac{4}{17}$ o.e. or M1 for one of above products	
(c)	$\frac{490}{600}$ or 0.817 or 0.8166 to 0.8167 o.e.	3	M2 for $1 - \frac{11}{25} \times \frac{10}{24}$ o.e.	
			M1 for 1 omitted product in $\frac{11}{25} \times \frac{14}{24} + \frac{14}{25} \times \frac{11}{24} + \frac{14}{25} \times \frac{11}{24} + \frac{14}{25} \times \frac{13}{24}$ or for $\frac{11}{25} \times \frac{10}{24}$ alone	

Page	e 6 Mark Scheme		Syllabus r
	IGCSE – May/June 2013		0607
			24
(a) (i)	$R = \frac{0.2}{d^2}$ o.e.	3	k could be evaluated in the
	d^2		M1 for $R = \frac{k}{d^2}$ o.e.
			M1 for substituting 0.8, 0.5 into k
			$R = \frac{k}{d^2}$ or $R = kd^2$ or $R = \frac{k}{d}$
(ii)	0.05	1FT	FT $R = \frac{k}{d^2}$ o.e. with incorrect k
			only
(iii)	0.224 or 0.2236 cao	2	M1 for substituting $R = 4$ into
			$R = \frac{k}{d^2}$ or $R = kd^2$ or $R = \frac{k}{d}$
			d^2 d with k numerical
(b)	0.5	2	M1 for $R \div 4$ o.e.
0 (a)	4	3	Good sketch with no overlaps of asymptotes and no departing from asymptotes. Must have positive x intercept. B1 for left hand branch to left of x = -3 and above $y = 1$ (approx.) B1 for right hand branch to right of x = -3 and below $y = 1$ (approx.)
(b)	(1, 0)	1	
(c)	x = -3	1	
	y = 1	1	
(d)	$-\frac{1}{3} \le f(x) < 1$	2	Accept y, x etc. Condone 0.333 B1 for either inequality or $-\frac{1}{3} < f(x) \le 1$
(e)	Sketch of $-5 - 2x$ or formula after $2x^2 + 12x + 14x^2$	4 o.e. M1	Allow other correct sketch for o.e.
	-4.14 or -4.414	B1	
	-1.59 or -1.586 to -1.585	B1	B2 max if no sketch or method shown
(f)	Correct sketch	2	B1 for translation in <i>x</i> direction
			B1 for asymptote at $x = 0$

	www.xtrapapers.com
--	--------------------

Page	e 7 Mark Scheme			Syllabus 7.0 r	
Гаус	IGCSE – May/June 2013			0607 2	
		1000E - May/Sulle 2013		30	
11 (a)	BAO =	of $ABO = CDO$ (alt angles) DCO (alt angles) COD (vert opp angles)	1+1	Syllabus 0607rB1 for any 2 pairs of any identified without a reason M1 for $CD/6 = 5/3$ o.e.	
(b)	10		2	M1 for $CD/6 = 5/3$ o.e.	
(c) (i)	$\frac{3}{5}$ o.e.		1		
(ii)	$\frac{9}{25}$ o.e.		1		
(iii)	$\frac{9}{64}$ o.e.		1	0.141 or 0.1406	
12 (a)	$\frac{5500}{x}$		1		
(b)	5500		B1		
	$\frac{x+60}{5500}$	- their $\frac{5500}{x+60} = \frac{1}{2}$ o.e.	M1FT	FT their expressions	
	5500(x	$(+60) - 5500x = \frac{1}{2}x(x + 60)$ o.e. or better	M1FT	Only FT <i>their</i> $\frac{5500}{x+60} - \frac{5500}{x} = \frac{1}{2}$ or 30 o.e. or for common denominator or LHS resolved to a single fraction and equated to $\frac{1}{2}$ (allow 1 sign	
	$x^2 + 60$	$x - 660\ 000 = 0$	E1	error) Established without any errors or omissions	
(c)	$-60\pm$	$\frac{\sqrt{60^2 - 4(1)(-660000)}}{2}$			
	Or para 783	bola sketched with one +ve and one -ve root	M1 B1	If B0 then SC1 for correct but both not rounded to nearest whole number	
	-843		B1	782.9 to 782.96, -842.9 to -842.96	
(d)	12 41 o	r 1242	3	M1 for 5500 \div <i>their</i> +ve x	
				B1 for 0540 or 0940 + $\left(\frac{5500}{their x}\right)$	
				[in hrs mins] – 4	