CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0444 MATHEMATICS (US)

0444/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme	Syllabus	· 10
		IGCSE – October/November 2012	0444	100
Abbr	eviations			Carry
cao	correct answ	ver only		O.
cso	correct solut	ion only		Sec
dep	dependent			, di
ft	follow throu	gh after error		On
isw		equent working		
oe	or equivalen	t		

Abbreviations

or equivalent oe Special Case SC

without wrong working anything rounding to seen or implied www art soi

Qu.	Part	Answers	Mark	Part Marks
1	(a) (i)	[0]9 15 [am]	1	Accepable form of time
	(ii)	64.9 or 65.[0] or 64.92 to 64.98	2	M1 for 92 ÷ (1 and 25 mins) or 92/85 × 60 o.e. or 92 ÷ (1.41 to 1.42)
	(iii)	11.76or 11.8	1	
	(iv)	80	3	M2 for 92 ÷ 1.15 o.e. or M1 for 115% associated with 92
	(b) (i)	$(150 \div (11+16+3) \text{ or } 150 \times 3 \text{ o.e.}$ then $\times 3$ or $\div 30$	M1 E1	Correct first step Correct conclusion
	(ii)	11:9 final answer	2	M1 for 8.25 : (15 – 8.25) o.e. For M1 e.g. allow 1 : 0.818 [0.8181 to 0.8182] or 1.22 : 1 [1.222] After M0, SC1 for 9 : 11 as final answer
2	(a) (i)	Image at $(-3, 1)$, $(-7, 7)$, $(-3, 7)$	2	SC1 for translation $\begin{pmatrix} -11 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -1 \end{pmatrix}$
	(ii)	Image at $(-4, -1)$, $(-4, -4)$, $(-2, -4)$	2	SC1 for enlargement factor 0.5 and correct orientation
	(b) (i)	Reflection, $y = 1$	2	In each part of (b) must be one transformation only – if more then lose all marks for that part. B1 B1 independent
	(ii)	Rotation, (3, 2), 180 o.e. or enlargement, (3, 2), (factor) – 1	3	B1 B1 independent
	(iii)	Stretch, (factor) 0.5, Invariant line <i>y</i> -axis or $x = 0$	3	B1 B1 B1 independent – must be clear on invariant line
3	(a)	7.407 or 7.41	1	
	(b)	9	2	M1 for $1080 \div (12 \times 10)$ o.e.

Page 3	Mark Scheme	Syllabus	.0	V.
	IGCSE – October/November 2012	0444	100	

		T	1	· 22.
	(c) (i)	6.36 to 6.37 www	3	M2 for $\sqrt[3]{\frac{1080}{\frac{4}{3}\pi}}$ o.e.
				or M1 for $\frac{1080}{\frac{4}{3}\pi}$ o.e. [257.7 to 258.7]
				Accept 4.18 to 4.19 for $4/3 \pi$
	(ii)	508 to 510	2	M1 for $4 \times \pi \times (their (\mathbf{c})(\mathbf{i}))^2$
	(d)	$\sqrt{2}$ or 1.41 [1.414] www	2	Allow over 1 or $\sqrt{2}$: 1 etc. M1 for $(R/r)^2 = 2$ o.e. or $[R^2 =] (2 \times their \mathbf{c(ii)})/4 \pi$ or $[R^2 =] 2 \times (their \mathbf{(c)(i)})^2$
4	(a)	$\frac{2}{20}$ o.e.	2	M1 for $\frac{2}{5} \times \frac{1}{4}$
	(b)	$\frac{6}{20}$ o.e.	3	M2 for $2 \times \frac{1}{5} \times \frac{1}{4} + 2 \times \frac{2}{5} \times \frac{1}{4}$ o.e.
		20		M1 for pairs 1, 4 and 2, 3 clearly identified and no other incorrect pairings or for one appropriate product isw
	(c)	$\frac{14}{20}$ o.e.	1FT	FT 1 – <i>their</i> (b) or recovery to correct ans
5	(a)	5, -1	2	B1 B1
	(b)	12 points plotted	P3FT	P2FT for 10 or 11, P1FT for 8 or 9
		Smooth curve through at least 12 points	C1	In absence of plot[s], allow curve to imply plot[s]. No ruled sections
		Two separate branches	B1	Not touching <i>y</i> -axis
	(c) (i)	0.55 to 0.65	1	
	(ii)	0.65 to 0.75	2	M1 for $y = 3x$ drawn ruled to cross curve
	(d)	$\frac{1}{3}$	2	Accept 0.333[3] or 0.3
1	1	5		M1 for Z 2 2 or botton
				M1 for $\frac{2}{x^2} - 3x = 3x$ or better

Page 4	Mark Scheme	Syllabus	3
	IGCSE – October/November 2012	0444	20

	I	T		- Sign
	(ii)	y = -3.5x + 1.5 o.e. final answer	3	B2 for $y = kx + 1.5 [k \neq 0]$ y = -3.5x + d o.e. B1 for gradient = - 3.5 o.e. acconteger/integer y = kx + [1.4 to 1.6] o.e.
				SC2 for answer $-3.5x + 1.5$ [no 'y =']
	(iii)	Tangent	1	
6	(a)	0.57	B4	Condone use of other variables M1 for $2w+3l = 3.6$ o.e. and M1 for $l = w + 0.25$ o.e. A1 for correct $aw = b$ or $cl = d$ or M2 for $2w + 3(w + 0.25) = 3.6$ o.e. or $2(l - 0.25) + 3l = 3.6$ o.e. or M1 for $w + 0.25$ or $l - 0.25$ seen A1 for $2w + 3w = 3.6 - 0.75$ or better or $2l + 3l = 3.6 + 0.5$ or better $l = 0.82$ implies M2A1 trial & error scores B4 or zero accept answer 57 if written 57 cents after M0, SC3 if answer 57
	(b) (i)	$\frac{5}{x} + \frac{6}{x+2} = 1 \text{o.e.}$	M2	e.g. $\left(1 - \frac{5}{x}\right)(x+2) = 6$ M1 for $\frac{5}{x}$ seen or $\frac{6}{x+2}$ seen or $xy = 5$ and $(x+2)Y = 6$ o.e. or $xy = 5$ and $(x+2)(1-y) = 6$ o.e. e.g. $(x-5)(x+2) = 6x$
		5(x+2)+6x = x(x+2) o.e.	A1	Allow $5x + 10 + 6x = x^2 + 2x$ and allow all over correct denominator but must see this line
		$5x + 10 + 6x = x^{2} + 2x$ $0 = x^{2} - 9x - 10$	E 1	One correctly expanded line seen No errors or omissions
	(ii)	(x-10)(x+1)	2	SC1 for $(x+a)(x+b)$ where $ab = -10$
				or $a + b = -9$
	(iii)	21	2FT	FT a positive x into $2(x + \frac{5}{x})$ M1 for 0.5 seen or $5 / their$ positive root

Page 5	Mark Scheme	Syllabus	3
	IGCSE – October/November 2012	0444	20

	(a) (i)	(2 2 2 -2	M1	an,
	(c) (i)	$(2x+3)^2 = (x+3)^2 + 5^2$ o.e. $4x^2 + 6x + 6x + 9 = x^2 + 3x + 3x + 9 + 25$	M1	for $4x^2 + 6x + 6x + 9$ or $4x^2 + 12x$
		$4x^{2} + 6x + 6x + 9 = x^{2} + 3x + 3x + 9 + 25$ o.e.	B1 B1	for $4x^2 + 6x + 6x + 9$ or $4x^2 + 12x$ for $x^2 + 3x + 3x + 9$ or $x^2 + 6x + 9$
		$3x^2 + 6x - 25 = 0$	E1	No errors or omissions
	(ii)	$\frac{-6 \pm \sqrt{6^2 - 4(3)(-25)}}{2(3)}$	2	B1 for $\sqrt{6^2 - 4(3)(-25)}$ or better seen If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ o.e.
		– 4.06, 2.06 final answer	B1B1	B1 for $p = -6$ and $r = 2(3)$ or better B1 B1 After B0 B0 SC1 for -4.1 and 2.1 or -4.055 and 2.055 or -4.06 and 2.06 seen
	(iii)	12.63 to 12.65 or 12.6 or 12.7	2FT	FT (a positive $x + 3$) × 2.5 SC1 for $0.5 \times their$ positive value × 5 written
7	(a)	$\sin \left[\right] = \frac{130}{0.5 \times 16 \times 25}$ o.e.	M2	M1 for $0.5 \times 16 \times 25 \times \sin [] = 130$ o.e. but if 40.54 reached from implicit
		40.54 = 40.5	E1	method then M2 Must see 40.54 and conclusion Use of 40.5 alone in implicit expression scores M1.
	(b)	16.51 to 16.53 or 16.5 www 4	4	M2 for $16^2 + 25^2 - 2 \times 16 \times 25 \times \cos$ (40.5) o.e. [allow 40.54] (M1 for $\cos 40.5 = \frac{16^2 + 25^2 - AC^2}{2 \times 16 \times 25}$) [allow 40.54] A1 for 272.6 to 273.0(which implies M2)
	(c)	10.39 to 10.4[0]	2	M1 for $0.5 \times 25 \times \text{distance} = 130$ or $\frac{dist}{16} = \sin[40.5] \text{ o.e. [allow } 40.54]$
8	(a) (i)	4 2	1 1	
	(ii)	$4\cos(2x-60)$ o.e.	2	B1 for $4\cos(kx+c)$, $k \neq 0$ Or B1 for $\cos(2x-60)$ o.e.
	(b)	Correct sketch by eye	2	B1 for correct shape but missing intercepts with <i>x</i> -axis or for graph through both intercepts with <i>x</i> -axis

Page 6	Mark Scheme	Syllabus	10
	IGCSE – October/November 2012	0444	200

				0,
9	(a)	24	3	M2 for 24 at B or 128 at X and or M1 for 28 at D or 128 at X allow on diagram M2 for $360 - 22x = 2 \times 25x$ o.e. or better
	(b)	5 www	3	M2 for $360 - 22x = 2 \times 25x$ o.e. or better or $22x = 2(180 - 25x)$ o.e. or better or $11x + 25x = 180$ o.e. or better or M1 for $P = 11x$ or reflex $O = 360 - 22x$ or reflex $O = 50x$ allow on diagram
	(c)	6.32 to 6.34 www	5	B1 for OLM 90° (seen or implied) allow on diagram and M1 for LM = 8tan44 [7.7255] or OM = 8 ÷ cos44 [11.1213] and M1dep on previous M for 0.5 × 8 × <i>their LM</i> or 0.5 × 8 × (<i>their OM</i>) sin44
				and M1 for $\frac{44}{360} \times \pi \times 8^2$ o.e. [24.5 to 24.6]
10	(a) (i)	72	1	
	(ii)	68	1	
	(iii)	8	1	
	(iv)	164	2	M1 for 36 seen may be on graph
	(b) (i)	11	1	
	(ii)	35, 45, 55, 65, 75, 85 (9 × 35 + their 11 × 45 + 16 × 55 + 28 × 65 + 108 × 75 + 28 × 85) [13990]	M1 M1	At least 5 correct mid-values soi $\sum fx \text{ where } x \text{ is in the correct interval}$ allow one further slip
		÷ 200 or their $\sum f$ 69.95 or 69.9 or 70[.0] cao	M1dep A1	Depend on second method must be from 13990 isw conversion to mins/secs & reference to classes SC2 for correct answer without working
11	(a)	A 1, $13-2n$ B 36, n^2 C 42, $n(n+1)$ D 729, 3^n E 687, $3^n - n(n+1)$	3 2 3 2 2FT	B1, B2 (M1 for $k-2n$) o.e. B1, B1 B1, B2 (B1 for a quadratic in n) B1, B1 B1FT their D – their C , B1FT their D – their C only if both in terms of n

Page 7	Mark Scheme	Syllabus	.0	V
	IGCSE – October/November 2012	0444	100	

(b) (i)	-187	1FT	FT if A is linear
(ii)	10100	1FT	FT if C is quadratic
(c)	8	1FT	18
(d)	58 939 cao	1	`