

MARK SCHEME for the May/June 2013 series

0444 MATHEMATICS (US)

0444/41

Paper 4, maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

F	Page 2	Mark Scheme	Syllabus
		IGCSE – May/June 2013	Syllabus 0444
Abbre	eviations		ambridge.co
cao	correct answer of	ıly	24
cso	correct solution of	nly	3
dep	dependent	•	-e
ft	follow through a	ter error	2
isw	ignore subsequer		
be	or equivalent	6	
SC	Special Case		
www	without wrong w	orking	
art	anything roundin	•	
soi	seen or implied		

	Qu	Answers		Part Answers
1	1 (a) Enlargement [centre] (-3, 4) [scale factor] 3		1 1 1	Do not allow column vector for coordinates
	(b) (i)	Image at (1, 5), (4, 5), (4, 6), (1, 7)	2	SC1 for translation by $\binom{5}{k}$ or $\binom{k}{4}$
	(ii)	Image at (5, 1), (8, 1), (8, 3), (5, 2)	2	SC1 for reflection in $y = 2$
	(iii)	Image at (-4, 3), (-4, 5), (-7,5), (-7, 4)	2	SC1 for rotation of 180° about a different point
2	(a) (i)	[0] 8 15	1	
	(ii)	$\frac{1.8}{27} \times 60$ [= 4] oe	M2	M1 for $\frac{1.8}{27}$ oe [0.0667 or better]
	(b) (i)	275	3	M2 for $\frac{15-4}{4} \times 100$ or $\frac{15}{4} \times 100 - 100$ oe
				or M1 for $\frac{15-4}{4}$ or $\frac{15}{4} \times 100$ or or 375
	(ii)	73.3[3]	3	M2 for $\frac{1.8}{15} \times 60$ [= 7.2 min] and $\frac{27 - their 7.2}{27} \times 100$ oe
				or 1.8 (01 - 7.2 min) or final array of 26 (16 - 1
				M1 for $\frac{1.8}{15} \times 60$ [= 7.2 min] or final answer of 26.6[6] or 26.7
	(iii)	25	2	M1 for $\frac{9}{figs \ 36}$ oe

i	Pa	ge 3	Mark Sche	eme	Syllabus	
			IGCSE – May/Ju	June 2013 0444 73		
		1		3	Syllabus O13 0444 B1 for each correct value B2FT for 7 correct points or B1FT for 5 or 6 correct points	
3	(a)	(a) 3, 0.33[3], 1			B1 for each correct value	
	(b)	(b) Correct quadratic curve			B2FT for 7 correct points	
					B1FT for 5 or 6 correct points	
		Correct exponentia	ıl curve	3	B2FT for 7 correct points	
					or B1FT for 5 or 6 correct points	
		рания и противности и противнос	· · · · · · · · · · · · · · · · · · ·			
	(c) (i)	Answer in range 1	2 < r < 1.4	1		
					Not from a line other than $y = A(1, 1, \dots, n)$	
	(ii) Answer in range $1.2 < x < 1.35$		1	Not from a line other than $y = 4 (\pm 1 \text{ mm})$		
	(iii)	Answer in range 0		1		
	(d)	Correct tangent dra range $-2.5 < m < -$		3	B1 for correct tangent at $x = 0.5$ B2 for answer in range dep on close attempt at tangent	
					M1 for $[-]^{rise}$ used with values soi from tangent, dep	
					on close attempt at tangent or answer in	
					range $-1.5 < m < -1.5$ or	
					SC1 for close attempt at tangent to exponential curve and answer in the range $-1.6 < m < 2.2$	
4	(a) (i)	3.2		1		
	(ii)	4.2		1		
	(iii)	4.6		1		
	(iii) (iv)	196		1		
	(lv) (b) (i)	100, 46, 12		2	B1 for 2 correct	
				2		
	(11)	(ii) 4			M1 for frequency of 60 or 140 seen in workspace	

www.xtrapapers.com

	Page 4		Mark Scheme		Syllabus
			IGCSE – May/J	une 2	013 0444 73
					am
5	(a)	171.25 (or 171 or 171.2 or 171.3) www		4	Syllabus0130444M1 for at least 3 mid-values seenM1 for $\sum fx$ with x's in intervals including bounM1 (dep on second M1) for their $\sum fx \div 42$
	(b)	160 < <i>x</i> <	<i>x</i> < –165 oe		
	(c)	Blocks with heights of 1.8, 1.2, 1, with correct interval widths and no gaps		4	 B3 for 2 correct blocks or B2 for 1 correct block or B1 for 3 correct frequency densities or heights or 3 correct widths
6	(a)	White = 8.5 Red = 11		5	B3 for $7w + 5(w + 2.5) = 114.5$ or for $7(r - 2.5) + 5r = 114.5$ oe B1 for 8.5 or 11 or SC2 for $7w + 5 \times w + 2.5 = 114.5$ leading to 9.33[3] or SC1 for $7w + 5 \times w + 2.5 = 114.5$ OR B1 for $r = w + 2.5$ oe B1 for $r = w + 2.5$ oe B1 for $7w + 5r = 114.5$ oe M1 for elimination of a variable A1 for 8.5 or 11
	(b) (i)	$\frac{42}{132} \text{ or } \frac{21}{66} \text{ or } \frac{14}{44} \text{ or } \frac{7}{22}$ (0.318 or 0.3181 to 0.3182)		2	M1 for $\frac{7}{12} \times \frac{6}{11}$
	(ii)	$\frac{70}{132} \text{ or } \frac{3}{6}$ (0.53[0]	35 56 or 0.5303)	3	M2 for $\frac{7}{12} \times \frac{5}{11} + \frac{5}{12} \times \frac{7}{11}$ or $1 - their (a) - \frac{5}{12} \times \frac{4}{11}$ or M1 for $\frac{7}{12} \times \frac{5}{11}$ or $\frac{35}{132}$ or SCI for $\frac{70}{12}$ as from replacement
					SC1 for $\frac{70}{144}$ oe from replacement

						4	www.xtrapapers.com
	Page 5 Mark Scho					i de l	
	IGCSE – May/J)13	0444	"ac
7	7 (a) 31.4 (b) $[\sin E =] \frac{15.7 \times \sin 52}{16.5}$ 48.573				M2 for $\frac{15.7}{\sin 30}$ or M1 for correct implicit statement		www.xtrapapers.com
			M2 A1	M1 for correct in			
	(c) (i)	$\begin{bmatrix} \angle ACE = \end{bmatrix} \\ \begin{bmatrix} = 79.43 \end{bmatrix} \\ \begin{bmatrix} \angle ECD = \end{bmatrix}$	180 – 52 – 48.57] 40.57	M1 A1			
	(ii)	(ii) 15.3 or 15.27 to 15.281 www			M2 for $[(DE)^2 = 16.5^2 + 23.4^2 - 2$ or M1 for full correct A1 for 233 to 23	$2 \times 16.5 \times 23.4$ co ect implicit staten	
	(d)	466 or 466.34 to 466.5		4	M1 for $0.5 \times 15.7 \times their 31.4 \sin(90 - 30)$ oe M1 for $0.5 \times 15.7 \times 16.5 \sin(128 - their 48.6 \text{ or } 48.57)$ oe M1 for $0.5 \times 16.5 \times 23.4 \sin(40.6 \text{ or } 40.57)$ oe		
8	(a) (i)	118		2	M1 for (3 × 180	- 2 × 110 - 84) [÷2] or better
	(ii)	31		1FT	FT (180 – <i>their</i> ((i)) ÷ 2	
	(iii)	22		1FT	FT $84 - 2 \times their$ answer and less	• /	(ii) – 40, only if positive
	(b)	32		4	B2 for $360 - 3y = 300$ and B1 for $11y = 352$ or M1 for angle at 0	2 oe	e at circumference soi
	(c) (i)	Opposite a 180°	ngles [cyclic quad] add to	1			
	(ii) 68		3	M1 for [angle P_{L} and M1 for angle PQ angle PRQ = ang	QS = angle PRS of	r	
	(d)	5.75		3	M2 for $6.9 \times \sqrt{\frac{2}{7}}$ or M1 for evidence or sf = 1.2	-	= $(ratio of slides)^2$

WWW xtrapapers.com Syllabus 0444 Mark Scheme IGCSE – May/June 2013 Page 6

			877
9 (a)	$\frac{-1\pm\sqrt{1^2-4\times1\times(-3)}}{2}$	2	B3 for $\sqrt{1^2 - 4 \times 1 \times (-3)}$ or better and if in the form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ then
			B1 for $p = -1$ and $r = 2(1)$ or better
	-2.30, 1.30 final answer	2	B1B1 SC1 for -2.30 and 1.30 seen or -2.3 or -2.303 to -2.303 and 1.3 or 1.302 to 1.303 or final answer -1.30 and 2.30
(b)	4, 30, 53	3	M1 for $(2x + 7)^2 + (2x + 7) - 3$ and B1 for $(2x + 7)^2 = 4x^2 + 14x + 14x + 49$ oe
(c)	$\frac{x-7}{2}$	2	M1 for $y-7=2x$ or $x=2y+7$ or -7 then $\div 2$ clearly seen in correct order with arrow or
			better or $\frac{y-7}{2}$
(d)	-2	1	
(e)	1.158×10^{77}	4	B3 for 1.16×10^{77} or $1.1579 \dots \times 10^{77}$ or 1.1157×10^{77} or
			B2 for 2^{256} seen or
			B1 for 2^8 seen or 256
(f)	Stretch <i>x</i> -axis invariant	3	B1 B1
	[factor]2 or 2×2^x seen		B1
10 (a)	50, 70 10 <i>n</i> oe	1 1	
	51, 71	1	
	10n + 1 oe	1	
(b) (i	i) 212	1	
(ii	i) $20n + 12$	1	
(iii	i) $20n + 152$	1	
(c) (i	i) $5 \times 3^2 + 6 \times 3 = 63$ 11+21+31=63	1	
	or $32+31=63$ or $11+52=63$	1	
(ii	i) 560	1	

www.xtrapapers.com

	Page 7 Ma IGCSE -		neme June 20	013	Syllabus Adda 0444 Adda Strategy	
(d)	and a cond E.g. $5n^2 + 6n + = 5n^2 + 6n = 5n^2 + 10$	e solution with no errors seen clusion + $10(n + 1) + 1$ n + 10n + 10 + 1 0n + 5 + 6n + 6 $)^2 + 6(n + 1)$	4	B1 for use of $5(n)$	Syllabus 0444 $(+10n + 10 + 1 \text{ or better})^2 = 5n^2 + 10n + 5 \text{ oe at } 10n + 5 \text{ of at } 10n + 5 $	ae.com
11	6.61 (6.6	14) www	6	A1 for $[x =] 2.5$ M2 for $\sqrt{(2 \times theorem 1)}$ or M1 for $(2 \times theorem 1)$ SC2 for final ans	$\frac{9}{16} \text{ oe}$ 9 = 9(2x + 3) or better $\overline{eir x + 3}^2 - (their x + 2)^2$ $5 = (their x + 2)^2$ swer of $4\sqrt{13}$ or $\frac{7\sqrt{15}}{2}$ or better swer of $5\sqrt{7}$ or better	