MARK SCHEME for the May/June 2014 series

0444 MATHEMATICS (US)

0444/41
Paper 4, maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 4	Mark Scheme	Syllabus
	IGCSE - May/June 2014	0444

5 (a) (i) (ii) (iii) (b)	$\begin{aligned} & 0.6 \text { oe } \\ & 1500 \\ & 0.03 \text { oe } \\ & \frac{112}{132} \text { oe } \frac{28}{33}=0.848[4 \ldots] \end{aligned}$	$\begin{aligned} & \mathbf{2} \\ & \mathbf{1} \\ & \mathbf{2} \end{aligned}$	M1 for $0.2+0.4$ M1 for 0.1×0.3 M2 for $1-\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{5}{11}+\frac{5}{12} \times \frac{7}{11}+\frac{7}{12} \times \frac{6}{11}$ or $\frac{7}{12}+\frac{5}{12} \times \frac{7}{11}$ or M1 for addition of any two of $\frac{7}{12} \times \frac{5}{11}, \frac{5}{12} \times \frac{7}{11}, \frac{7}{12} \times \frac{6}{11}$ or sum of 3 products with an error in the numerator of one product or for $\frac{5}{12} \times \frac{4}{11}$ identified
6 (a) (i) (ii) (b) (i) (ii)	Image: $(-5,-1),(-4,-1),(-5,-3)$ Image: $(1,-1),(3,-1),(3,-2)$ Enlargement [factor] 3 [centre] (3, 3) Stretch [factor] 3 Invariant line y-axis oe	2 1 1 1 1 1	SC1 for translation $\binom{-6}{k}$ or $\binom{k}{-4}$ SC1 for rotation about the origin but 90° anticlockwise Accept dilation Do not allow column vector for coordinates of centre Accept $x=0$, stays the same
$7 \quad$ (a) (b)	2.125 and 2.375 Correct curve	2 B4	B1 for one correct value B3FT for 11 correct plots or B2FT for 9 or 10 correct plots or B1FT for 7 or 8 correct plots

Page 5 Mark Scheme	Syllabus	
	IGCSE - May/June 2014	0444

(c) (d) (e)	Ruled tangent at $x=2$ Gradient from 7.8 to 10.2 0 and -1.75 to -1.65 and 1.65 to 1.75 $-1.2 \text { to }-0.8<k<2.8 \text { to } 3.2$	B1	No daylight at $x=2$. Consider contact as midpoint between two vertices of daylight, this must be between $x=1.8$ and 2.2 Dep on B1 awarded Allow integer/integer or a mixed number if within range or M1 dep for (change in y) \div (change in x) Dependent on any tangent drawn or close attempt at a tangent at any point Must see correct or implied calculation from a drawn tangent B1 for two correct values B1 for each correct or SC1 for reversed answers
(a) (i) (ii) (iii) (b) (i) (ii)	34 to 34.5 18 41 to 42 31.8[4...] nfww Correct histogram	2	B1 for $[\mathrm{UQ}=] 43$ or $[\mathrm{LQ}=] 25$ B1 for 56 seen or horizontal line drawn at $\mathrm{cf}=56$ M1 for midpoints soi (condone 1 error or omission) and M1 for use of $\sum f t$ with t in correct interval including both boundaries (condone 1 further error or omission) and M1 (dep on $2^{\text {nd }} \mathrm{M} 1$) for $\Sigma f t \div 80$ ($2547.5 \div 80$) B1 for each correct block with correct width and height If $\mathbf{B 0}$ then $\mathbf{S C} \mathbf{1}$ for four correct f.d.s or four correct widths
9 (a) (i) (ii) (iii)	5 $-2 \frac{1}{3}$ oe $\frac{x+3}{2}$ or $\frac{x}{2}+1.5$ as final ans	2 2	B1 for $[\mathrm{h}(-1)=] \frac{1}{3}$ soi or M1 for $2\left(3^{x}\right)-3$ M1 for $y+3=2 x$ or $x=2 y-3$ or $\frac{y}{2}=x-1.5$ or better or correct reverse flowchart

