CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0444 MATHEMATICS (US)

0444/13

Paper 1 (Core), maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page	2 Mark Scheme	Syl
	Cambridge IGCSE – October/November 2014	044
Abbrevi	iations	Carry
cao	correct answer only	O.
dep	dependent	8
FT	follow through after error	260
isw	ignore subsequent working	- On
oe	or equivalent	
SC	Special Case	
nfarar	not from wrong working	

Abbreviations

not from wrong working seen or implied nfww

soi

	Qu.	Answers	Mark	Part Marks
1		$\frac{13}{100}$ oe	1	
2	(a)	304 620	1	
	(b)	305 000	1FT	
3	(a)	2	1	
	(b)		1	
4	(a)	5	1	
	(b)	0.75 oe	1	
5	(a)	23	1	
	(b)	-15.5	1	
6	(a)	_2	1	
	(b)	1	1	
7		$\frac{2}{15}$ cao	2	M1 for $\frac{12}{15} - \frac{10}{15}$ oe
8		$\frac{y+1}{6}$ oe	2	B1 for $y + 1 = 6x$ or $\frac{y}{6} = x - \frac{1}{6}$
				If B0 SC1 for $\frac{y-1}{6}$ or $\frac{y}{6}+1$
9		$0.0155, \frac{1}{10}, 0.1055, 15\%, \frac{1}{5}$	2	B1 for 0.2, 0.15 and 0.1 seen or 1.55%, 20%, 10% and 10.55% seen or SC1 for four in correct order
10		2.4×10^8	2	B1 for 240 000 000 oe or B1 for $k \times 10^8$ or 2.4×10^k

www.xtrapapers.com

Page 3	Mark Scheme	Syl
	Cambridge IGCSE – October/November 2014	044

11		30	2	M1 for $2x + 3x + 4x + 90 = 360$ oe M1 for $56 \div 0.8$ oe
12		70	2	M1 for 56 ÷ 0.8 oe
13	(a)	1440	2	M1 for $18 \times 10 \times 8$
	(b)	1700	1	
14	(a)	6 <i>j</i> – <i>k</i>	2	B1 for $6j \pm ak$ or $bj - k$ (a and $b \neq 0$)
	(b)	5(p+2)	1	
15	(a)	12	1	
	(b)	60	1	
	(c)	Irrational number between 1 and 2	1	
16		9.5 or $\frac{19}{2}$	3	M2 for $2x = (8 \times 3) - 5$ or better oe or M1 for $2x + 5 = 8 \times 3$ or better
17	(a)	16[kg]	1	
	(b)	Positive	1	
	(c) (i)	Ruled line of best fit	1	
	(ii)	Correct reading from ruled line	1FT	
18	(a)	Correct bisector with two pairs of correct arcs	2	B1 for correct bisector without arcs
	(b)	Correct ruled line with at least one pair of relevant arcs	2	B1 for correct line without arcs or incorrect arcs
19	(a)	71.7	2	B1 for 90° seen
	(b)	13	2	M1 for $\sqrt{12^2 + 5^2}$
20	(a)	Trapezoid	1	
	(b)	64°	1	
	(c)	24 nfww	3	B1 for 7, 5 and 4 seen M1 for 0.5 × <i>their</i> 4 × <i>their</i> (5 + 7)
21	(a) (i)	-5, 1, 7	2	B1 for any two correct
	(ii)	-2, 0, 2, 4	1	May be indicated on mapping diagram
	(b)	one to many oe	1	