MARK SCHEME for the May/June 2015 series

0444 MATHEMATICS (US)

0444/21
Paper 2, maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syl
	Cambridge IGCSE - May/June 2015	$044{ }^{\circ}$
Abbreviations		
cao cor	correct answer only	-
dep	dependent	
FT	follow through after error	
isw	ignore subsequent working	
oe or	or equivalent	
SC Sp	Special Case	
nfww n	not from wrong working	
soi s	seen or implied	

Qu.	Answers	Mark	Part Marks
1	9.5	1	
2	0.0001 oe	1	
3	$2 x^{2}+8 x-35$ final answer	2	B1 for 2 correct terms in answer or M1 for $2 x^{2}+3 x$ or $5 x-35$
4	Paul and correct reason with 28% oe shown or conversion of 26% to fraction and common denominator	2	B1 for $\frac{7}{25}$ seen as decimal or $\%(0.28)$ or conversion of 26% to fraction and common denominator
5	$24 u^{2} w^{3}$ final answer	2	B1 for 2 correct elements in final answer
6	$5 \sqrt{3}$	2	B1 for $[\sqrt{12}=] 2 \sqrt{3}$ or $[\sqrt{27}=] 3 \sqrt{3}$
7	10	3	M2 for $\sqrt{(7--1)^{2}+(11-5)^{2}}$ oe or M1 for $(7--1)$ oe or $(11-5)$ oe
8	$\frac{5}{21} \text { cao }$	3	B1 for $\frac{9}{5}$ or $\frac{5}{9}$ or $\frac{63}{35}$ or $\frac{35}{63}$ M1 for $\frac{3}{7} \times$ their $\frac{5}{9}$ or $\frac{15}{35} \div \frac{63}{35}$ oe
$9 \quad$ (a) (b)	2		M1 for $4^{\frac{3}{2}}$ or $\left(\frac{1}{2}\right)^{-3}$ or $\left(\frac{1}{64}\right)^{-\frac{1}{2}}$
10 (a) (b)	$4 n$ oe final answer $3 n^{2}+8$ oe final answer		M1 for a quadratic expression as final answer or $3 n^{2}+8$ oe in working

Page 3	Mark Scheme	SyM
	Cambridge IGCSE - May/June 2015	044

11	18	3	M2 for $2(2+4)^{2}=p(-2+4)^{2}$ oe M1 for $p=\frac{k}{(q+4)^{2}}$ A1 for $k=72$
12 (a) (b)	54	2	M1 for $18 \times \frac{1000}{60 \times 60}$ oe $\text { FT } 270 \div \text { their } \text { (a) }$
13 (a) (b)	2b Parallelogram $P M$ equal and parallel to $Q R$ or $P M$ or $P S$ parallel to $Q R$ and $M R$ found $=\mathbf{a}$ so 2 pairs of parallel sides	1 1 1	SC1 for answer trapezoid with reason $P M$ parallel to $Q R$
14	$\begin{aligned} & y<8 \\ & y \geqslant 6-x \text { oe and } y \geqslant x+2 \text { oe } \end{aligned}$	1 3	B2 for either $y \geqslant 6-x$ oe or $y \geqslant x+2$ oe or SC2 for $y=6-x$ oe and $y=x+2$ oe or SC1 for $y>6-x$ or $y=6-x$ or $y>x+2$ or $y=x+2$
15	5300	3	B2 for 300 or M2 for $5000+\frac{5000 \times 2 \times 3}{100}$ oe or M1 for $\frac{5000 \times 2 \times 3}{100}$ oe
16 (a) (b)	$\begin{aligned} & 2 \times 3 \times 5 \\ & 90 \end{aligned}$	2	B1 for 2, 3, 5 as prime factors B1 for $90 k$ or $2 \times 3 \times 3 \times 5$ or for listing multiples of each up to 90
17	$\begin{aligned} & x=3 \\ & y=-1 \end{aligned}$	4	M1 for correctly equating one set of coefficients M1 for correct method to eliminate one variable A1 $x=3$ A1 $y=-1$ If zero scored SC1 for 2 values satisfying one of the original equations

18 (a) (b)	$7.5 \text { oe }$ 18		M1 for [10] $\times \frac{6}{8}$ oe M1 for $\left(\frac{6}{8}\right)^{2}$ or $\left(\frac{8}{6}\right)^{2}$ oe or $\frac{32 \times 2}{8} \times \frac{6}{8}$ or $\frac{32 \times 2}{10} \times \frac{6}{8}$
19 (a) (b)	$(p+t)(y+2 x)$ final answer $7(h+k)(h+k-3)$ final answer		B1 for $y(p+t)+2 x(p+t)$ or $p(y+2 x)+t(y+2 x)$ B1 for $7\left((h+k)^{2}-3(h+k)\right)$ or $(h+k)(7(h+k)-21)$
20	45π	3	M1 for $\frac{1}{3} \times \pi \times 3^{2} \times 9(27 \pi)$ M1 for $\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^{3}(18 \pi)$ or SC2 for final answer 63π or 141.3...
21 (a) (b)	2.3×10^{12} $a+100 b \text { or } a+b \times 10^{2}$	1	M1 for 20×10^{11} or 0.3×10^{12} seen or correct answer not in scientific notation e.g. 23×10^{11} or 2300000000000
22	$\begin{array}{ll} F & C \\ A & E \end{array}$	$\begin{aligned} & 1,1 \\ & 1,1 \end{aligned}$	
23 (a) (b) (c) (d)	-13 $-3 x-1$ or $5-3(x+2)$ $9 x-10$ $\frac{5-x}{3}$ final answer oe	1 2 2	M1 for $5-3(5-3 x)$ M1 for correct first step e.g. $y+3 x=5$ or $\frac{y}{3}=\frac{5}{3}-x$ or $y-5=-3 x$ or better or for interchanging x and y e.g. $x=5-3 y$, this does not need to be the first step

