

0444 MATHEMATICS (US)

0444/21

Paper 2, maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Sy. A aba per 044 bacambridge com

Page 2

Mark Scheme Cambridge IGCSE – May/June 2015

Abbreviations

cao	correct answer only
dep	dependent

- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Qu.	Answers	Mark	Part Marks
1	9.5	1	
2	0.0001 oe	1	
3	$2x^2 + 8x - 35$ final answer	2	B1 for 2 correct terms in answer or M1 for $2x^2 + 3x$ or $5x - 35$
4	Paul and correct reason with 28% oe shown or conversion of 26% to fraction and common denominator	2	B1 for $\frac{7}{25}$ seen as decimal or % (0.28) or conversion of 26% to fraction and common denominator
5	$24u^2w^3$ final answer	2	B1 for 2 correct elements in final answer
6	5√3	2	B1 for $[\sqrt{12} =] 2\sqrt{3}$ or $[\sqrt{27} =] 3\sqrt{3}$
7	10	3	M2 for $\sqrt{(71)^2 + (11-5)^2}$ oe or M1 for (71) oe or (11-5) oe
8	$\frac{5}{21}$ cao	3	B1 for $\frac{9}{5}$ or $\frac{5}{9}$ or $\frac{63}{35}$ or $\frac{35}{63}$
			M1 for $\frac{3}{7} \times their \frac{5}{9}$ or $\frac{15}{35} \div \frac{63}{35}$ oe
9 (a)	2	1	
(b)	8	2	M1 for $4^{\frac{3}{2}}$ or $\left(\frac{1}{2}\right)^{-3}$ or $\left(\frac{1}{64}\right)^{-\frac{1}{2}}$
10 (a)	4 <i>n</i> oe final answer	1	
(b)	$3n^2 + 8$ oe final answer	2	M1 for a quadratic expression as final answer or $3n^2 + 8$ oe in working

			www.xtrapapers.com
3	Mark Schen		Sy. Ser
	Cambridge IGCSE – M	ay/June	2015 044 73
	18	3	M2 for $2(2+4)^2 = p(-2+4)^2$ oe
			Sylver and a set of the set of
			A1 for <i>k</i> = 72
	5	2	M1 for 18 $\times \frac{1000}{60 \times 60}$ oe
	54	1FT	FT 270 ÷ <i>their</i> (a)
	2 b	1	
	Parallelogram	1	
	<i>PM</i> equal and parallel to <i>QR</i> or	1	SC1 for answer trapezoid with reason PM parallel to QR

1

3

3

2

2

4

or

B2 for 300

B1 for 90*k*

A1 x = 3**A1** y = -1

or $2 \times 3 \times 3 \times 5$

the original equations

B2 for either $y \ge 6 - x$ oe or $y \ge x + 2$ oe

SC2 for y = 6 - x oe **and** y = x + 2 oe or **SC1** for y > 6 - x or y = 6 - x

or y > x+2 or y=x+2

or **M1** for $\frac{5000 \times 2 \times 3}{100}$ oe

B1 for 2, 3, 5 as prime factors

or for listing multiples of each up to 90

M1 for correctly equating one set of coefficients

M1 for correct method to eliminate one variable

If zero scored SC1 for 2 values satisfying one of

or **M2** for $5000 + \frac{5000 \times 2 \times 3}{100}$ oe

Page

11

12 (a)

13 (a)

14

15

16 (a)

17

(b)

(b)

(b)

PM or *PS* parallel to *QR*

parallel sides

y < 8

5300

 $2 \times 3 \times 5$

90

x = 3

y = -1

and MR found = a so 2 pairs of

 $y \ge 6 - x$ oe and $y \ge x + 2$ oe

Page	e 4 Mai	rk Scheme	Syl Syl			
J		Cambridge IGCSE – May/June 2015 044				
18 (a)	7.5 oe	2	M1 for $\left[\frac{6}{6}\right]^2$ or $\left(\frac{8}{8}\right)^2$ oe			
(b)	18	2	M1 for $\left(\frac{6}{8}\right)^2$ or $\left(\frac{8}{6}\right)^2$ oe or $\frac{32 \times 2}{8} \times \frac{6}{8}$ or $\frac{32 \times 2}{10} \times \frac{6}{8}$			
19 (a)	(p+t)(y+2x) final answer	2	B1 for $y(p+t)+2x(p+t)$ or $p(y+2x)+t(y+2x)$			
(b)	7(h+k)(h+k-3) final answer	2	B1 for $7((h+k)^2 - 3(h+k))$ or $(h+k)(7(h+k)-21)$			
20	45π	3	M1 for $\frac{1}{3} \times \pi \times 3^2 \times 9$ (27 π) M1 for $\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3$ (18 π) or SC2 for final answer 63 π or 141.3			
21 (a)	2.3×10^{12}	2	M1 for 20×10^{11} or 0.3×10^{12} seen or correct answer not in scientific notation e.g. 23×10^{11} or 2300000000000			
(b)	$a + 100b \text{ or } a + b \times 10^2$	1				
22		1, 1 1, 1				
23 (a)	-13	1				
(b)	-3x - 1 or $5 - 3(x + 2)$	1				
(c)	9x - 10	2	M1 for $5 - 3(5 - 3x)$			
(d)	$\frac{5-x}{3}$ final answer oe	2	M1 for correct first step e.g. $y + 3x = 5$ or $\frac{y}{3} = \frac{5}{3} - x$ or $y - 5 = -3x$ or better or for interchanging x and y e.g. $x = 5 - 3y$, this			