CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0444 MATHEMATICS (US)

0444/41

Paper 4, maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page	2 Mark Scheme	Syl
	Cambridge IGCSE – May/June 2015	044
Abbrevi	iations	Carry
cao	correct answer only	DAIL
dep	dependent	98
FT	follow through after error	, in
isw	ignore subsequent working	- On
oe	or equivalent	
SC	Special Case	
m f	not from vymana vyanlina	

Abbreviations

not from wrong working seen or implied nfww

soi

Qı	uestio	n	Answers	Mark	Part Marks
1	(a)	(i)	$\frac{13}{13+8+3} \times 12000 \text{ with no subsequent}$ errors	1	
		(ii)	4000	1	
	(b)		$2 \times 6500 + 5 \times their(\mathbf{a})(\mathbf{ii}) + (12000 - 6500 - their(\mathbf{a})(\mathbf{ii}))$	2	B1 for any two of 2 × 6500, 5 × their(a)(ii), (12000 – 6500 – their(a)(ii)) seen
			or $(13 \times 2 + 8 \times 5 + 3 \times 1) \times 500$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(c)		37 500	3	M2 for $\frac{34500}{100-8} \times 100$ oe
					M1 for 34500 associated with (100 – 8)%
	(d)		$\frac{11}{26}$ cao	2	M1 for any correct simplified version of $\frac{2750}{6500}$
2	(a)		1.5 1.25 -0.75 0.5	4	B1 for each
	(b)		Fully correct curve	5	B5 for correct curve over full domain or B3 FT for 11 or 12 points
					or B2 FT for 9 or 10 points
					or B1 FT for 7 or 8 points
					and
					B1 independent for one complete branch on each side of the <i>y</i> -axis and not touching or crossing the <i>y</i> -axis.
					SC4 for correct curve with branches joined

Page 3	Mark Scheme	Sy. per
	Cambridge IGCSE – May/June 2015	044

-			3.
(c)	-1.35 to -1.25	1	ambridge
	−0.27 to −0.251	1	To the state of th
	1.51 to 1.55	1	
(d)	<i>k</i> < 1.2 or 1.15 to 1.25	2	SC1 for 1.15 to 1.25 seen or horizontal line drawn at min point
(e)	tangent ruled at $x = -1$	B1	No daylight at $x = -1$ Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = -1.1$ and -0.9
	-1.7 to -1.3	2	dep on B1 or a close attempt at tangent at $x = -1$
			or M1 for rise/run also dep on any tangent drawn or close attempt at tangent at any point. Must see correct or implied calculation from a drawn tangent
3 (a) (i)	image at $(1,-3)$, $(4,-3)$, $(2,-2)$, $(1,-2)$	2	SC1 for translation $\begin{pmatrix} -1 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -4 \end{pmatrix}$ or 4 correct vertices plotted but not joined
(ii)	image at (-6, 1), (-9, 1), (-7, 2), (-6, 2)	2	SC1 for reflection in other vertical line or in $y = -2$ or 4 correct vertices plotted but not joined
(iii)	image at $(-6, -1), (-9, -1), (-7, -2), (-6, -2)$	2	SC1 for any other 180° rotation or 4 correct vertices plotted but not joined
(b) (i)	enlargement	1	accept dilation
	[centre] (1, 0)	1	not as column vector
	[scale factor] -3	1	
(ii)	stretch	1	
	[factor] 3	1	
	x-axis invariant	1	accept 'the line $y = 0$ ' for x-axis

Page 4	Mark Scheme	Sy. per
	Cambridge IGCSE – May/June 2015	044
		5

			3.
4 (a) (i)	$\frac{3}{8}$ oe	1	0.375
(ii)	$\frac{7}{8}$ oe	1	0.875
(b) (i)	$\left \frac{6}{8}, \frac{5}{9}, \frac{4}{9}, \frac{5}{9} \right $ oe in correct places	2	B1 for 2 correct
(ii)	$\frac{34}{72}$ oe	3	M2 FT for $\frac{2}{8} \times their \frac{5}{9} + their \frac{6}{8} \times their \frac{4}{9}$ oe or M1 FT for one of these products in the answer space
(c)	$\frac{48}{72}$ oe	2	M1 for $\frac{6}{8} \times \frac{8}{9}$ oe
5 (a) (i)	10.6 or 10.59	2	M1 for $\tan = \frac{55}{294}$ oe
(ii)	175 or 174.9[] to 175.[1]	4	M2 for $[adj =] \frac{55}{\tan 24.8}$ oe
			or M1 for implicit version and M1 dep on at least M1 for 294 – their adj
(b) (i)	11.5 or 11.53 to 11.54	1	
	168.5 or 168.4 to 168.5	1	allow 168 SC for 11.5 or 168.5 seen in working or two angles, one acute and one obtuse, adding to 180
(ii)	$\sqrt{3}$	1	
(iii)	[p=] 2	1	
	[q =] 0.5	1	
(iv)	$\tan (x-2)$	1	

Page 5	Mark Scheme	Sv
	Cambridge IGCSE – May/June 2015	044

6 (a) (i)	$24 < t \le 30$	1	M1 for midpoints soi (condone 1 error or
(ii)	30.9 or 30.875 nfww	4	M1 for midpoints soi (condone 1 error or omission) 5, 17, 27, 35, 50, 65 soi
			M1 for use of $\sum fx$ with x in correct interval including both boundaries (condone 1 further error or omission) (50, 1530, 3645, 2975, 3500, 650) and M1 (dep on 2^{nd} M1) for $\sum fx \div 400$
(b) (i)	[10 100] 235 320 390 [400]	2	B1 for any two correct SC1 for 235, n , $n + 70$ $n > 235$
(ii)	Correct curve or polygon	3	B1 for correct horizontal placement B1FT for correct vertical placement
			B1FT dep on at least B1 for reasonable increasing curve or polygon through their 6 points
			If zero scored SC1 for 5 out of 6 points correctly plotted
(c) (i)	27.5 to 29	1	
(ii)	12 to 14	2	B1 for 36 to 38 or 24 seen
(iii)	18 to 20	2	B1 for 60 seen or marked on grid
(iv)	30 to 45	2	B1 for 355 to 370 seen
7 (a) (i)	8.27 or 8.269 nfww	4	M2 for $7.6^2 + 8.4^2 - 2 \times 7.6 \times 8.4 \times \cos(62)$ oe or M1 for implicit form
			A1 for $[PQ^2 =]$ 68.3 to 68.5
(ii)	28.2 or 28.18	2	M1 for $0.5 \times 7.6 \times 8.4 \times \sin 62$ oe
(b)	55.8 or 55.78 to 55.79 nfww	5	B1 for $[HGJ] = 81$
			B1 for $[GHJ] = 61$
			M2 for $[GJ =] \frac{63}{\sin(their 81)} \times \sin(their 61)$ or
			M1 for implicit form After M0, SC1 for final answer of 68.1

Page 6	Mark Scheme	Sy. per
	Cambridge IGCSE – May/June 2015	044
		C

				6
8	(a)	5x = 75 or $5x + 48 = 123$	B2	M1 for $x + (x + 12) + 3(x + 12) = X$
		15	B1	The state of the s
	(b)	6, 7	3	B2 for answer of 6 or 7 OR
				M1 for $t < 8$
				M1 for $t \ge \frac{37}{7}$
				OR
				SC2 for final answer of 5, 6, 7 or 6, 7, 8
				or SC1 for final answer of 5, 6, 7, 8
	(c) (i)	1.8 oe	3	M1 for $21 - x = 4(x + 3)$ or better B1 for $[\pm]5x = k$ or $kx = [\pm]9$
	(ii)	$\sqrt{7^2 - 4 \times 3 \times (-5)}$ or better nfww	B1	or for $\left(x + \frac{7}{6}\right)^2$
				or for $\left(\frac{x+6}{6}\right)$
		and		
		$\frac{-7 + \sqrt{q}}{2(3)}$ or $\frac{-7 - \sqrt{q}}{2(3)}$ oe	B1	or for $-\frac{7}{6} \pm \sqrt{\frac{5}{3} + \left(\frac{7}{6}\right)^2}$
			B1B1	
		-2.91 and 0.57 final ans cao	DIDI	SC1 for 0.6 or 0.573 and
				- 2.9 or - 2.907 or -2.906
				or - 0.57 and 2.91
				or 0.57 and – 2.91 seen in working
9	(a) (i)	5	2	M1 for $25x + 11x = 180$ oe or better
	(ii)	35	2FT	FT $90 - 11 \times their x$ only if answer is
				positive M1 for [angle $AOC =] 22 \times their x$

Page 7 Mark Scheme Cambridge IGCSE – May/June 2015

					- All
	(b)	(i)	37.7 or 37.69 to 37.704 nfww	2	M1 for $6\pi + 4\pi \pm 2\pi$ oe
		(ii)	12100, 12060, 12070, 12062.4 to 12065.6 nfww	5	M1 for $6\pi + 4\pi \pm 2\pi$ oe SC4 for answer with figs 121 or 1206 to 1207 OR M2 for total area = $\frac{1}{2}\pi 6^2 + \frac{1}{2}\pi 4^2 - \frac{1}{2}\pi 2^2$
					or $\frac{1}{2}\pi60^2 + \frac{1}{2}\pi40^2 - \frac{1}{2}\pi20^2$ or M1 for $\frac{1}{2}\pi6^2$ or $\frac{1}{2}\pi4^2$ or $\frac{1}{2}\pi2^2$
					or $\frac{1}{2}\pi60^2$ or $\frac{1}{2}\pi40^2$ or $\frac{1}{2}\pi20^2$
					A1 for area = 75.39 to 75.41 or 7539 to 7541 and M1 dep for volume = <i>their</i> area × thickness
10	(a)	(i)	13.1	1	
	()		120	1	
	(b)	(i)	Correct perpendicular bisector with two pairs of intersecting arcs	2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs
		(ii)	Accurate angle bisector at <i>A</i> with correct intersecting arcs	2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs
	(c)		Complete circle drawn with AD as tangent	1	
	(d)		Correct angle and <i>Y</i> marked on <i>BC</i> with correct arcs	2	B1 for accurate angle with arcs or <i>Y</i> on <i>BC</i> without correct arcs
11	(a)		$\frac{At}{t+r}$ final answer oe nfww	4	B1 for $t(A-x) = xr$ or $tA - tx = xr$ or $A = \frac{xr}{t} + x$
					 M1 for correctly completing multiplication by t (eliminating any bracket) and x terms isolated M1 for correct factorisation M1 dep for correct division
	(b)		[<i>a</i> =] 64	3	B1 for $2b = -16$ or $(x - 8)^2$
			[b=] -8		B1 for $a = (their b)^2$
					If 0 scored, SC1 for $x^2 + 2bx + b^2$ soi

Page 8	Mark Scheme	Syl Syl per
	Cambridge IGCSE – May/June 2015	044

(c)	$\frac{13x+8}{(x-4)(3x-2)}$	final answer	nfww	3	B1 for $6(3x-2)-5(x-4)$ or better B1 for $(x-4)(3x-2)$ oe seen as denom
					or SC2 for final answer $\frac{13x - 32}{(x - 4)(3x - 2)}$