Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS (US)

0444/21
Paper 2 (Extended)
May/June 2017
MARK SCHEME
Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Part marks
1	x^{10}	1	
2	4	1	
3(a)	23.46 cao	1	
3(b)	20 cao	1	
4(a)	Chicago	1	
4(b)	-3	1	
5	$4 n(3 n-m)$ final answer	2	B1 for $4\left(3 n^{2}-m n\right)$ or $n(12 n-4 m)$ or $2 n(6 n-2 m)$ or $2\left(6 n^{2}-2 m n\right)$
6(a)	-4	1	
6(b)	$\frac{1}{5} \text { or } 0.2$	1	
7	$2 \frac{8}{21} \text { cao }$	3	M2 for $\frac{50}{21}$ or $1 \frac{8}{21}$ or $\frac{29}{21}$ or $1 \frac{29}{21}$ or M1 for $\frac{14 k(\operatorname{or} 35 k)}{21 k}+\frac{15 k}{21 k}$
8	$r t$ $(1-t) r$ $(1-r) t$ oe $(1-r)(1-t)$ oe	3	B1 for each
9	1.5 oe	3	M1 for $h=k \sqrt{p}$ oe M1 for $h=$ their $k \sqrt{p}$ or M2 for $\frac{6}{\sqrt{4}}=\frac{h}{\sqrt{\frac{1}{4}}}$ oe

Question	Answer	Marks	Part marks
10	Correct region identified	3	 SC1 for
11	60	3	M2 for $75 \div \sqrt[3]{\frac{125}{64}}$ or $75 \times \sqrt[3]{\frac{64}{125}}$ or M1 for $\sqrt[3]{\frac{125}{64}}$ soi or $\sqrt[3]{\frac{64}{125}}$ soi or $\left(\frac{h}{75}\right)^{3}=\frac{64}{125}$ oe
12	$k-3$ or $-3+k$	3	M1 for $5=\frac{23-8}{k-x}$ oe M1 for $5(k-x)=23-8$ or better e.g. $[x=] k-\frac{23-8}{5}$
13	3.75 or $3 \frac{3}{4}$ or $\frac{15}{4}$	3	M2 for $5 \times \frac{3}{4}$ or M1 for $\frac{4}{3}=\frac{5}{B C}$ oe
14	165	3	M2 for $\frac{360}{8}+\frac{360}{3}$ oe or M1 for [exterior angle of octagon $=] \frac{360}{8}$ or [exterior angle of triangle $=$] $\frac{360}{3}$ oe
15(a)	$7 \sqrt{5}$	2	B1 for $2 \sqrt{5}$ or $5 \sqrt{5}$
15(b)	$14+4 \sqrt{6}$ oe final answer	2	B1 for 3 correct from $(\sqrt{2})^{2}+\sqrt{2} \times 2 \sqrt{3}+\sqrt{2} \times 2 \sqrt{3}+(2 \sqrt{3})^{2}$ or better

Question	Answer	Marks	Part marks
$21(\mathrm{a})$	$[u=] 35$	$\mathbf{1}$	
	$[v=] 110$	$\mathbf{2}$	B1 for $A C B$ or $A D B=35$
$21(\mathrm{~b})$	75	$\mathbf{2}$	B1 for 150 or M1 for $\frac{360-210}{2}$
$22(\mathrm{a})$	$\frac{x}{x+3}$ final answer	$\mathbf{3}$	B1 for $x(x-3)$ B1 for $(x-3)(x+3)$
$22(\mathrm{~b})$	$\frac{3 x+7}{(x-4)(2 x+5)}$ final answer	B1 for common denominator of $(x-4)(2 x+5)$ M1 for 3(2x+5) $+2(x-4)$ oe with an attempt to expand the brackets	

