

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS (US)

Paper 2 (Extended)

MARK SCHEME

Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge IGCSE - Mark Scheme **PUBLISHED**

Abbreviations

correct answer only cao

dependent dep

follow through after error FT ignore subsequent working isw

or equivalent oe SC

Special Case not from wrong working nfww

soi seen or implied

Question	Answer	Marks	Part marks
1	x^{10}	1	
2	4	1	
3(a)	23.46 cao	1	
3(b)	20 cao	1	
4(a)	Chicago	1	
4(b)	-3	1	
5	4n(3n-m) final answer	2	B1 for $4(3n^2 - mn)$ or $n(12n - 4m)$ or $2n(6n - 2m)$ or $2(6n^2 - 2mn)$
6(a)	-4	1	
6(b)	$\frac{1}{5}$ or 0.2	1	
7	$2\frac{8}{21}$ cao	3	M2 for $\frac{50}{21}$ or $1\frac{8}{21}$ or $\frac{29}{21}$ or $1\frac{29}{21}$
			or M1 for $\frac{14k(\text{or35}k)}{21k} + \frac{15k}{21k}$
8	rt $(1-t) r$ $(1-r)t oe$ $(1-r)(1-t) oe$	3	B1 for each
9	1.5 oe	3	M1 for $h = k\sqrt{p}$ oe M1 for $h = their k\sqrt{p}$ or M2 for $\frac{6}{\sqrt{4}} = \frac{h}{\sqrt{\frac{1}{4}}}$ oe

Question	Answer	Marks	Part marks
10	Correct region identified R	3	0 1 2 2 3 2 1 2 1 SC1 for
11	60	3	M2 for $75 \div \sqrt[3]{\frac{125}{64}}$ or $75 \times \sqrt[3]{\frac{64}{125}}$ or M1 for $\sqrt[3]{\frac{125}{64}}$ soi or $\sqrt[3]{\frac{64}{125}}$ soi or $\left(\frac{h}{75}\right)^3 = \frac{64}{125}$ oe
12	k-3 or $-3+k$	3	M1 for $5 = \frac{23 - 8}{k - x}$ oe M1 for $5(k - x) = 23 - 8$ or better e.g. $[x =]k - \frac{23 - 8}{5}$
13	3.75 or $3\frac{3}{4}$ or $\frac{15}{4}$	3	M2 for $5 \times \frac{3}{4}$ or M1 for $\frac{4}{3} = \frac{5}{BC}$ oe
14	165	3	M2 for $\frac{360}{8} + \frac{360}{3}$ oe or M1 for [exterior angle of octagon =] $\frac{360}{8}$ or [exterior angle of triangle =] $\frac{360}{3}$ oe
15(a)	$7\sqrt{5}$	2	B1 for $2\sqrt{5}$ or $5\sqrt{5}$
15(b)	$14 + 4\sqrt{6}$ oe final answer	2	B1 for 3 correct from $(\sqrt{2})^2 + \sqrt{2} \times 2\sqrt{3} + \sqrt{2} \times 2\sqrt{3} + (2\sqrt{3})^2$ or better

Question	Answer	Marks	Part marks
16(a)	Points plotted at (4.5, 33) and (6.5, 35)	1	
16(b)	Positive	1	
16(c)	Correct ruled line	1	
16(d)	33.5 to 37.5	1FT	FT from their line provided positive gradient
17(a)	[amplitude =] $\frac{1}{2}$ [period =] 1080	2	B1 for each or SC1 for answers reversed
17(b)	[u =] -3 [v =] 5	2	M1 for $(x-2)^2 + (x-2) + 3$ or better If zero scored, SC1 for $u = 5$ and $v = 9$
18(a)	$2\mathbf{a} + \mathbf{b}$	1	
18(b)	D	1	
18(c)	\overrightarrow{CF} and \overrightarrow{BG}	2	B1 for each
19	$[p =] \frac{100}{3}$ oe $[q =] -50$	4	M3 for $2 \times \left\{ \left(\frac{60}{360} \times \pi \times 10^2 \right) - \left(\frac{1}{2} \times 10^2 \times \sin 60 \right) \right\}$ or M2 for $\left[\frac{1}{2} \times \right] 10^2 \times \sin 60$ and $\left[2 \times \right] \frac{60}{360} \times \pi \times 10^2$ or M1 for $\left[\frac{1}{2} \times \right] 10^2 \times \sin 60$ or $\left[2 \times \right] \frac{60}{360} \times \pi \times 10^2$ or $\sin 60 = \frac{\sqrt{3}}{2}$
20(a)	5 7 7 8 10 7 9 9 10 12	1	
20(b)	7	1	
20(c)(i)	⁷ / ₂₅ or 0.28 or 28%	2FT	FT $\frac{their 7}{25}$ B1 for $\frac{k}{25}$ If zero scored, SC1 for $\frac{2}{5}$ or $\frac{6}{15}$ if no values in the bottom two rows of the table
20(c)(ii)	0	1FT	FT $\frac{their 0}{25}$

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Part marks
21(a)	[<i>u</i> =] 35	1	
	[v =] 110	2	B1 for ACB or $ADB = 35$
21(b)	75	2	B1 for 150 or M1 for $\frac{360-210}{2}$
22(a)	$\frac{x}{x+3}$ final answer	3	B1 for $x(x-3)$ B1 for $(x-3)(x+3)$
22(b)	$\frac{8x+7}{(x-4)(2x+5)}$ final answer	3	B1 for common denominator of $(x-4)(2x+5)$ M1 for $3(2x+5)+2(x-4)$ oe with an attempt to expand the brackets