Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME
CENTER NUMBER

You must answer on the question paper.
You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, center number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary work clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π, use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 130 .
- The number of marks for each question or part question is shown in parentheses [].

Formula List

For the equation

$$
a x^{2}+b x+c=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Lateral surface area, A, of cylinder of radius r, height h.
Lateral surface area, A, of cone of radius r, sloping edge l.
Surface area, A, of sphere of radius r.

Volume, V, of pyramid, base area A, height h.

Volume, V, of cone of radius r, height h.

Volume, V, of sphere of radius r.

$A=2 \pi r h$
$A=\pi r l$
$A=4 \pi r^{2}$
$V=\frac{1}{3} A h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{4}{3} \pi r^{3}$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area $=\frac{1}{2} b c \sin A$

1

(a) Draw the reflection of triangle T in the line $y=-2$.
(b) Draw the enlargement of triangle T with scale factor $\frac{1}{2}$ and center of enlargement $(-5,-3)$.
(c) Describe fully the single transformation that maps triangle T onto triangle A.
\qquad
\qquad

2 (a) Here are the ingredients needed to make a pasta bake to serve 12 people.
250 g butter
600 g pasta
460 g mushrooms
280 g cheese
800 ml milk
(i) Find the mass of the cheese as a percentage of the mass of the mushrooms.
(ii) Find the mass of butter needed to make a pasta bake to serve 18 people.
(iii) Monica has 2.2 liters of milk and 1.5 kg of each other ingredient. Calculate the greatest number of people she can serve with pasta bake.
(b) In 2019, a packet of pasta cost $\$ 2.40$.

This was an increase of 25% of the cost of a packet in 2018.
(i) Work out the cost in 2018.
$\$$
(ii) In 2020, the cost of a packet increased by 15% from the cost in 2019.

Work out the total percentage increase in the cost of a packet from 2018 to 2020.
(c) The pasta bake for 12 people uses 250 g of butter, 460 g of mushrooms and 280 g of cheese.

A new type of pasta bake is made using the same amounts of butter and mushrooms but the amount of cheese is increased by x grams.
The new ratio butter : mushrooms : cheese $=50: 92: 59$.

Find the value of x.
$x=$
[2]

3 (a) Simplify fully.
(i) $p^{3} \times p^{11}$
(ii) $\frac{18 m^{6}}{3 m^{2}}$
(iii) $\left(\frac{27 x^{9} y^{27}}{64}\right)^{-\frac{1}{3}}$
(b) A sequence has nth term $3 n^{2}$.

Write down the first 3 terms of this sequence.
(c) Find the nth term for each of these sequences.
(i) $13,16,19, \quad 22,25, \ldots$
(ii) $3,17, \quad 55,129, \quad 251, \ldots$
(d) Solve.

$$
\frac{3 x-22}{4}=23
$$

$$
x=
$$

(e) Use the quadratic formula to solve $3 x^{2}+8 x-20=0$.

Show all your work and give your answers correct to 2 decimal places.
$x=., ~ x=$

The diagram shows a water trough in the shape of a prism.
The prism has a cross-section in the shape of an isosceles trapezoid.
The trough is completely filled with water.
(a) Show that the volume of water in the trough is 206.4 liters.
(b) The water from the trough is emptied at a rate of 600 ml per second.

Calculate the time taken, in minutes and seconds, for the trough to be emptied.
\qquad minutes \qquad seconds
(c) All the water from the trough is emptied into a vertical cylindrical tank. The depth of the water in the tank is 84 cm .
(i) Calculate the radius of the tank.

(ii) The tank is 60% full.

Calculate the height of the tank.
(d)

The diagram shows a quadrilateral with right angles at B and D. $A B=11.1 \mathrm{~cm}, B C=9.5 \mathrm{~cm}$ and $C D=3.9 \mathrm{~cm}$.

Calculate the perimeter of the quadrilateral.

5 (a) $P=5 k^{2}-7$
(i) Find the value of P when $k=3$.

$$
\begin{equation*}
P= \tag{2}
\end{equation*}
$$

(ii) Solve for k.

$$
\begin{equation*}
k= \tag{3}
\end{equation*}
$$

(b) (i) Solve.

$$
x-3 \leqslant 5 x+7
$$

(ii) Show your answer to part (b)(i) on the number line.

(c) The line $y=16$ is drawn on the grid.

The region R satisfies the following inequalities.
$y \geqslant 16$
$x>2$
$2 x+3 y \geqslant 72$
$y \leqslant 32-x$
(i) By drawing three more lines and shading the region not required, find and label region R.
(ii) Find the integer coordinates (x, y) of the point in the region R that give the maximum value of $2 x+y$.
\qquad

6 Regan is playing a game with these six number cards.
-3

7
(a) She takes two cards at random, without replacement, and multiplies the two numbers to give a score.

Find the probability that
(i) the score is 35
\qquad
(ii) the score is a positive number.
(b) Regan now takes three cards at random from the six cards, without replacement, and adds the three numbers to give a total.

Find the probability that her total is 5 .

7 The height, $h \mathrm{~cm}$, of each of 100 plants is recorded. The table shows information about the heights of these plants.

Height $(h \mathrm{~cm})$	$10<h \leqslant 15$	$15<h \leqslant 25$	$25<h \leqslant 40$	$40<h \leqslant 60$	$60<h \leqslant 70$
Frequency	8	18	28	33	13

(a) Complete the histogram to show this information.

The first two blocks have been drawn for you.

(b) Calculate an estimate of the mean height.

A, B and C are points on the circle, center O.
$D E$ is a tangent to the circle at C.
$A C=10 \mathrm{~cm}, A B=9.5 \mathrm{~cm}$, and $B C=7.7 \mathrm{~cm}$.
(a) Show that angle $A B C=70.2^{\circ}$, correct to 1 decimal place.
(b) Find
(i) angle $A O C$

$$
\text { Angle } A O C=
$$

(ii) angle $A C O$

$$
\text { Angle } A C O=
$$

(iii) angle $A C D$.
(c) Calculate the radius, $O C$, of the circle.

$$
O C=
$$

cm [3]
(d) Calculate the area of triangle $A B C$ as a percentage of the area of the circle.

9
(a) $\quad \mathbf{a}=\binom{1}{2}$ $\mathbf{b}=\binom{-3}{5}$
(i) On the grid, draw and label vector $2 \mathbf{a}$.

(ii) On the grid, draw and label vector $(\mathbf{a}-\mathbf{b})$.

(b)

NOT TO
SCALE
$O A B C$ is a trapezoid with $O A$ parallel to $C B$.
M is the midpoint of $C B$ and N is the point on $A B$ such that $A N: N B=1: 2$.
O is the origin, $\overrightarrow{O A}=\mathbf{p}, \overrightarrow{O C}=\mathbf{q}$ and $\overrightarrow{C B}=\frac{3}{4} \mathbf{p}$.
(i) Find, in terms of \mathbf{p} and/or \mathbf{q}, in its simplest form
(a) $\overrightarrow{O B}$

$$
\begin{equation*}
\overrightarrow{O B}= \tag{1}
\end{equation*}
$$

(b) $\overrightarrow{A B}$

$$
\overrightarrow{A B}=
$$

(c) $\overrightarrow{M N}$.

$$
\begin{equation*}
\overrightarrow{M N}= \tag{3}
\end{equation*}
$$

(ii) $O A$ and $M N$ are extended to meet at G.

Find the position vector of G in terms of \mathbf{p}.

10 (a) $\mathrm{f}(x)=7-5 x$
Complete the mapping diagram.

(b) $\quad \mathrm{T}(x)=50+30 x$

A plumber charges $\mathrm{T}(x)$ dollars for x hours of work.
(i) Find the charge for 4 hours of work.
\$
(ii) Find the number of hours of work when the charge is $\$ 305$.
(iii) $\mathrm{C}(x)=20+50 x$

Another plumber charges $\mathrm{C}(x)$ dollars for x hours of work.
Find the number of hours of work when the charges of the two plumbers are the same.
(c) $\mathrm{j}(x)=a \sin b x$

The amplitude of $\mathrm{j}(x)$ is 5 and the period of $\mathrm{j}(x)$ is 60°.
Find the value of a and the value of b.

$$
\begin{align*}
& a=\text {.. } \\
& b=\text {... }
\end{align*}
$$

(d) (i) $\sin x^{\circ}=0.2$, for $0 \leqslant x \leqslant 360$

Find the values of x.
(ii) Complete the statement.
(e) $\quad \mathrm{g}(x)=5^{x}-2 x$

Find the value of x when $\mathrm{g}^{-1}(x)=3$.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

(f) Describe fully the single transformation that maps the graph of $y=\mathrm{h}(x)$ onto the graph of $y=3 \mathrm{~h}(x)$.
\qquad
\qquad

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

