MARK SCHEME for the May/June 2014 series

0459 ADDITIONAL MATHEMATICS (BES)

0459/01 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme		Syllabus
1	$\begin{aligned} & y=(x+2)(x-1)(x-3) \\ & \left(x^{2}+x-2\right) \text { or }\left(x^{2}-4 x+3\right) \text { or }\left(x^{2}-x-6\right) \\ & y=x^{3}-2 x^{2}-5 x+6 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	ft their brackets cao
2	$\begin{aligned} & \frac{x^{2}-2 x-3}{x^{2}-5 x+6} \times \frac{1}{x^{2}-1} \\ & =\frac{(x-3)(x+1)}{(x-2)(x-3)} \times \frac{1}{(x+1)(x-1)} \\ & =\frac{1}{(x-2)(x-1)} \text { isw } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	$x^{2}-1$ or $(x+1)(x-1)$ in denom of 2-layered fraction attempt factorise $\geqslant 2$ quad expns correctly factorise $\geqslant 2$ quad expns
3 (i) (ii)	$\begin{aligned} & \frac{\text { No. of J \& F }}{\text { Total }} \\ & =\frac{97}{132} \text { or } 0.735(3 \mathrm{sf}) \end{aligned}$ Attempt $\mathrm{P}(F)$ and $\mathrm{P}(F \mid J)$ $\mathrm{P}(F)=\frac{72}{132}$ $\mathrm{P}(F \mid J)=\frac{30}{55}$ one correct $\text { Both }=\frac{6}{11}$ Because these are equal, $A \& B$ are indep	M1 A1 M1 A1 A1 A1	attempted attempt $\mathrm{P}(J)$ and $\mathrm{P}(J \mid F)$ $\begin{aligned} & \mathrm{P}(J)=\frac{55}{132} \\ & \mathrm{P}(J \mid F)=\frac{30}{72} \\ & \text { Both }=\frac{5}{12} \end{aligned}$ Because these are equal, $A \& B$ are indep
4 (i) (ii)	$\left.\begin{array}{l} \mathbf{A}=\left(\begin{array}{ll} 2.25 & 2.35 \end{array}\right) \\ \mathbf{C}=\binom{8500}{9400} \\ \mathbf{A}=\left(\begin{array}{ll} 2.25 & 2.35 \end{array}\right)\left(\begin{array}{cc} 0.020 & 0 \\ 0 & 0.018 \end{array}\right)\binom{8500}{9400} \\ =\left(\begin{array}{ll} 0.045 & 0.0423 \end{array}\right)\binom{8500}{9400} \text { or } \\ (2.25 \\ 2.35 \end{array}\right)\binom{170}{169.2} .$	B1 B1 M1 A1 A1	first pair conformable and their product of correct shape correct figures and shape in first product dep all three mats conformable

Page 4	Mark Scheme	Syllabus
	IGCSE - May/June 2014	0459

9	Eliminate x or y $4 x^{2}-x-5=0$ or $4 y^{2}-45 y=0$ Factorise quadratic $x=\frac{5}{4}$ and -1 $y=\frac{45}{4}$ and 0	M1 A1 M1 A1 A1	
10 (a) (b) (i) (ii)	$\sin 2 A=-0.5$ or $\sin 330^{\circ}$ or $\sin 210^{\circ}$ 105° 165° $\sin P=\frac{4}{5}$ or $\cos Q=\frac{12}{13}$ their $\frac{4}{5} \times$ their $\frac{12}{13}+\frac{3}{5} \times \frac{5}{13}$ $\frac{63}{65}$ $\frac{\frac{5}{12}+2}{1-\frac{5}{12} \times 2}$ $\frac{29}{2}$ oe	M1 A1 A1 B1 M1 A1 M1 A1	answer(s) only do(es) not score answer only does not score answer only does not score
11 (i) (ii) (iii) (iv)	-2 $f \geqslant-9$ $\sqrt{y+9}$ seen $\sqrt{x+9}$ seen $\mathrm{f}^{-1}(x)=-2+\sqrt{x+9}$ oe Correct domain Correct use of mod Cusp at $(1,0)$	B1 B1 M1 M1 A1 B1 B1 B1	allow $y \geqslant-3$ or $[-3, \infty)$ may be implied by next mark interchanging x and y Allow unlabelled cusp on +ve x-axis

