

MARK SCHEME for the May/June 2014 series

0459 ADDITIONAL MATHEMATICS (BES)

0459/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

				www.xtrapapers.com
Page 2		Mark Scheme		Syllabus Syllabus
		IGCSE – May/June 2014		0459
	r		1	· Ca
	y = (x + x)	(x + 2)(x - 1)(x - 3) (x - 2) or (x ² - 4x + 3) or (x ² - x - 6)	B1 M1	Syllabus 0459 ft <i>their</i> brackets cao
	$y = x^2$	$x^{3} - 2x^{2} - 5x + 6$	A1	cao
		$\frac{2x-3}{5x+6} \times \frac{1}{x^2-1}$	M1	$x^2 - 1$ or $(x + 1)(x - 1)$ in denom of 2-layered fraction
	$=\frac{(x)}{(x)}$	$\frac{(-3)(x+1)}{(-2)(x-3)} \times \frac{1}{(x+1)(x-1)}$	M1 A1	attempt factorise ≥ 2 quad expns correctly factorise ≥ 2 quad expns
	$=\frac{1}{(x)}$	$\frac{1}{(x-1)}$ isw	A1	
(i)		o <u>f J & F</u> Fotal	M1	attempted
	$=\frac{97}{13}$	$\frac{7}{2}$ or 0.735 (3 sf)	A1	
(ii)	Atter	npt $P(F)$ and $P(F \mid J)$	M1	attempt $P(J)$ and $P(J F)$
		$=\frac{72}{132}$		$P(J) = \frac{55}{132}$

3 (i)	No. of J & F Total	M1	attempted
	$=\frac{97}{132}$ or 0.735 (3 sf)	A1	
(ii)	Attempt $P(F)$ and $P(F J)$	M1	attempt $P(J)$ and $P(J F)$
	$P(F) = \frac{72}{132}$		$P(J) = \frac{55}{132}$
	$P(F \mid J) = \frac{30}{55}$ one correct	A1	$P(J \mid F) = \frac{30}{72}$
	Both = $\frac{6}{11}$	A1	Both = $\frac{5}{12}$
	Because these are equal, A & B are indep	A1	Because these are equal, A & B are indep
4 (i)	$A = (2.25 \ 2.35)$	B1	
	$\mathbf{C} = \begin{pmatrix} 8500\\ 9400 \end{pmatrix}$	B1	
(ii)	$\mathbf{A} = (2.25 \ 2.35) \begin{pmatrix} 0.020 & 0 \\ 0 & 0.018 \end{pmatrix} \begin{pmatrix} 8500 \\ 9400 \end{pmatrix}$		
	$= (0.045 \ 0.0423) \binom{8500}{9400}$ or	M1	first pair conformable and their product of correct shape
	$(2.25 \ 2.35) \begin{pmatrix} 170\\ 169.2 \end{pmatrix}$	A1	correct figures and shape in first product
	= 780.12 or 780 (3 sf)	A1	dep all three mats conformable

				www.xtrapapers.con
Page 3				
		IGCSE – May/June 20 ⁻	14	0459 230
5	(i)	2 + 2i or 2(1 + i)	B1	SyllabusSyllabus0459or $2\sqrt{2}$ cis $\frac{\pi}{4}$ B2 for $\sqrt{2}$ i; B1 for ki ($k \neq \sqrt{2}$ or 0)
	(ii)	$\sqrt{2}$ i or $0 + \sqrt{2}$ i	B2	B2 for $\sqrt{2}$ i; B1 for ki $(k \neq \sqrt{2} \text{ or } 0)$
	(iii)	$\frac{2+2i+\sqrt{2}i}{2}$	M1	ft their (i) and (ii)
		$= 1 + \frac{2 + \sqrt{2}}{2}i \text{ or } 1 + 1.71i (3 \text{ sf})$	A1	
6	(i)	Centre (-4, 3) stated or implied $(x + 4)^2 + (y - 3)^2$ = 5 $x^2 + 8x + 16 + y^2 - 6y + 9 = 5$	B1 M1 M1	dep M1
	(ii)	$x^{2} + y^{2} + 8x - 6y + 20 = 0$ grad = $-\frac{1}{2}$	A1 B1	seen or implied
		$y-1 = -\frac{1}{2}(x+5)$ oe	M1	or $-4 = -1 \times 1 + c$ ft their gradient
		$y = -\frac{1}{2}x - \frac{3}{2}$ oe	A1	cao
7	(i)	$P(X=2) = \frac{2}{5} \times \frac{1}{4} (=\frac{1}{10} oe)$	M1	
		$P(X=3) = \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} (=\frac{1}{5} \text{ oe})$	M1	correct products for any two of $P(X=2)$, $P(X=3)$, $P(X=4)$ M1M1
		$P(X=4) = 1 - (\frac{1}{10} + \frac{1}{5} + \frac{2}{5}) (= \frac{3}{10} oe)$	M1	$1 - (\frac{2}{5} + \text{sum of two attempted})$ P(X=n)) M1
		$\frac{1}{10}, \frac{1}{5}, \frac{3}{10}$	A1	all three probs correct
	(ii)	$\Sigma xp \text{ attempted} = 4$ $\Sigma x^2 p \text{ attempted} (= 17)$ $- "4"^2$ = 1	M1 A1ft M1 M1 A1ft	dep previous M1 and +ve result
8			B1	or $(1 - \sqrt{2})^2 = 3 - 2\sqrt{2}$
		$ \begin{pmatrix} (1+\sqrt{2})^2 = 3 + 2\sqrt{2} \\ \frac{4-\sqrt{2}}{3+2\sqrt{2}} \times \frac{3-2\sqrt{2}}{3-2\sqrt{2}} \\ \end{pmatrix} $	M1	Mult numerator and denominator by $3-2\sqrt{2}$ or $(1-\sqrt{2})^2$
		$16 - 11\sqrt{2}$	A1 A1	A1 for numerator = $16 - 11\sqrt{2}$ A1 for denominator = 1 oe

Page 4		4 Mark Scheme IGCSE – May/June 2014			Syllabus 0459 Adapted	
9		Eliminate x or y $4x^2 - x - 5 = 0$ or $4y^2 - 45$ Factorise quadratic	by = 0 M A M	l	Syllabus 0459 Canbridge	
		$x = \frac{5}{4}$ and -1	А	l		
		$y = \frac{45}{4} \text{and} 0$	Α	l		
10	(a)	$\sin 2A = -0.5$ or $\sin 330^{\circ}$ or s 105° 165°	in210° M A A	l	answer(s) only do(es) not score	
	(b) (i)	$\sin P = \frac{4}{5} \text{ or } \cos Q = \frac{12}{13}$	В	l		
		their $\frac{4}{5}$ × their $\frac{12}{13}$ + $\frac{3}{5}$ × $\frac{5}{13}$	М	1		
		$\frac{63}{65}$	Α	l	answer only does not score	
	(ii)	$\frac{12}{1-\frac{5}{12}\times 2}$	М	1		
		$\frac{29}{2}$ oe	А	l	answer only does not score	
11	(i)	-2	В	l		
	(ii)	$f \ge -9$	В	l	allow $y \ge -3$ or $[-3, \infty)$	
	(iii)	$\sqrt{y+9}$ seen	М	1	may be implied by next mark	
		$\sqrt{x+9}$ seen $f^{-1}(x) = -2 + \sqrt{x+9}$ oe	M A		interchanging x and y	
	(iv)	Correct domain Correct use of mod Cusp at (1, 0)	B B B	L	Allow unlabelled cusp on +ve x-axis	

1	ww.x	trapap	ers.com
	m.s		-

	Page 5		Mark Scheme		Syllabus r
			IGCSE – May/June 2014		0459
12	(i)	$-4\mathbf{i}$ + $2\sqrt{5}$	2j or $\sqrt{20}$ or 4.47 (3 sf)	M1 A1	Syllabus 0459 May be implied by answer
	(ii)	12 i – <i>k</i> = –		M1 A1	C.Com
	(iii)		are collinear or equivalent	B1	or They all lie on the same straight line.
	(iv)		$= 4\mathbf{i} - 2\mathbf{j}$ $= (their \ \overrightarrow{OD})$ $- 0.8\mathbf{j}$	B1 M1 A1	
13	(a)	Corre	ect change of base to $\frac{\log_b c}{\log_b a}$	B1	
		\log_b	$(a^2)^{\frac{3}{2}}$	B1	
			$a^3 - \log_b c$	M1	
		log b	$\left(\frac{a^3}{c}\right)$	A1	
	(b)	-	$3 \times 3^{x} - 4 = 0$ 1)($3^{x} - 4$)	M1 M1 A1	allow substituted letters for 3^x ignore other soln, if given, for this A1
		1.26(18) or log ₃ 4 only	A1	$3^x = -1$ must be discarded for last A1