

MARK SCHEME for the May/June 2014 series

0459 ADDITIONAL MATHEMATICS (US)

0459/02

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme IGCSE – May/June 2014	1	Syllabus 0459
1 (i)	f(3) = 4	B1	ambri
(ii)	c = 4 $x^{3} - 2x^{2} - x - 2 = (x - 3)(x^{2} + ax + b) + 4$ consts: $-2 = -3b + 4$ $b = 2$ coeffs of x: $-1 = -3a + b$ $a = 1$ coeffs of x ² : $-2 = -3 + a$, $a = 1$ attempt to equate coeffs for one case either $b = 2$ or $a = 1$ $(x - 3)(x^{2} + x + 2) + 4$	B1 M1 A1 A1	Syllabus r 0459 0459 $x^2 + x + 2$ $x^2 - x + 2$ OR $x - 3)x^3 - 2x^2 - x - 2$ $\frac{x^3 - 3x^2}{x^2 - x}$ $\frac{x^2 - 3x}{x^2 - x}$ $\frac{x^2 - 3x}{2x - 2}$ $\frac{2x - 6}{4}$ M1 for $x^3 - 3x^2$ in working A1 for $(x - 3)(x^2 + x + 2) + 4$
(i) (a)	2a Real	B1	
(b) (c)	$(a+2i)(a-2i)$ $a^{2}+2ai-2ai-(2i)^{2} \text{ oe}$ $a^{2}+4 \text{ Real}$ $4i \text{ Imaginary}$	M1 A1 B1	correctly multiplying out brackets
(ii)	$\frac{a+2i}{a-2i} \times \frac{a+2i}{a+2i}$	M1	condone omission of brackets if recovered
	$= \frac{a^{2} + 4ai - 4}{a^{2} + 4}$ $= \frac{a^{2} + 4ai - 4}{a^{2} + 4}$	A1 M1	ft their fraction making numerator
	$a = \pm 2$	M1 A1	ft <i>their</i> fraction, making numerator imaginary

Page 3	Mark Scheme		Syllabus 7.0 r
J =	IGCSE – May/June 2014		0459
		1	C.
3 (i)	gradients = -2 , -2 , $\frac{1}{2}$, $\frac{1}{2}$	B1	mbj
	Two parallel pairs which are perp.	B1	Syllabus 0459 allow second B1 for rearranging equations correctly and commenting even if gradients not explicitly stated
(ii)	Attempting to solve $2y = x + 3$ and	M1	or Attempting to solve $2y = x + 3$
	y = 14 - 2x or $4y = 2x - 9$ and $y = 4 - 2x$		and $y = 4 - 2x$ or $y = 14 - 2x$ and 4y = 2x - 9
	A(1, 2)	A1	<i>B</i> (5, 4)
	<i>C</i> (6.5, 1)	A1	D(2.5, -1)
	$(6.5-1)^2 + (1-2)^2$ or better	M1	$(5-2.5)^2 + (4-1)^2$ or better
	$\frac{\sqrt{125}}{2}$ oe or 5.59 (3 sf) cao	A1	
(iii)	$\left(\frac{1+6.5}{2},\frac{2+1}{2}\right)$ oe	M1	$\left(\frac{5+2.5}{2}, \frac{4-1}{2}\right)$ oe
	(3.75, 1.5) oe	A1	FT
4 (i)	$\mathbf{A}^{-1} = \mathbf{B}^{2}$ $\Rightarrow \mathbf{A}\mathbf{A}^{-1} = \mathbf{A}\mathbf{B}^{2} \qquad \text{or } \mathbf{A}^{-1}\mathbf{B}^{-1} = \mathbf{B}^{2}\mathbf{B}^{-1}$ $\Rightarrow \mathbf{I} = \mathbf{A}\mathbf{B}^{2} \qquad \text{or } \mathbf{A}^{-1}\mathbf{B}^{-1} = \mathbf{B}$	M1	attempt left multiplication by \mathbf{A}
	$\Rightarrow \mathbf{B}^{-1} = \mathbf{A}\mathbf{B}^2\mathbf{B}^{-1} \qquad \text{or } \mathbf{A}\mathbf{A}^{-1}\mathbf{B}^{-1} = \mathbf{A}\mathbf{B}$	M1	attempt right multiplication by \mathbf{B}^{-1}
	$\Rightarrow \mathbf{B}^{-1} = \mathbf{A}\mathbf{B}$	A1	
(ii)	$\Rightarrow \mathbf{B}\mathbf{B}^{-1} = \mathbf{B}\mathbf{A}\mathbf{B}$ $\Rightarrow \mathbf{I} = \mathbf{B}\mathbf{A}\mathbf{B}$ $\Rightarrow \mathbf{B}^{-1} = \mathbf{B}\mathbf{A}\mathbf{B}\mathbf{B}^{-1}$	M1	attempt left multiplication by B or attempt right multiplication by \mathbf{B}^{-1}
	$\Rightarrow \mathbf{B}^{-1} = \mathbf{B}\mathbf{A}$ $\Rightarrow \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$	A1	for correct completion
5 (i)	$\frac{5}{6}$ or 0.667 or 0.833 seen	B1	
	$\left(\frac{5}{6}\right)^{25}$	M1	
	= 0.0105 (3 sf)	A1	allow 1.05%
(ii)	Small probabilityoeProbably effectiveoe	B2,1,0	or very unlikely oe allow "Drug is effective"

				www.xtrapap
Pag	e 4	Mark Scheme		Syllabus 70 r
		IGCSE – May/June 2014		0459 732
6 (i)		Class <i>A</i> more evenly spread or more widely spread oe	B1	Syllabus 0459 or Class <i>B</i> more bunched oe
		Class B has one outlier, A has none oe	B1	
(ii)	(a)	Unchanged oe	B1	
	(b)	Decrease oe	B1	
(iii)	(a)	$\frac{\sum fx}{\sum f} \text{ attempted} \qquad \left(=\frac{218}{39}\right)$	M1	$\frac{4 \times 5 + 5 \times 16 + 6 \times 11 + 7 \times 4 + 8 \times 3}{5 + 16 + 11 + 4 + 3}$
		= 5.59 (3 sf)	A1	
	(b)	(With Freda) A better than B but without Freda B better than A oe	B1	
7 (i)		BC = CD (triangle BCD isosceles) CE = CA (angle CAE = angle CEA , base angles of isosceles triangle ACE) BE = DA (given)		
		Triangle <i>BCE</i> is congruent to triangle <i>DCA</i> (SSS)	B2,1,0	allow B1 for two correct statements with supporting reasons
		Angle BCE = Angle DCA Therefore $BCA + ACE = DCE + ACE$ BCA = DCE.	B1	
(ii) and	(iii)	Triangle BCA is congruent to triangle DCE (SAS) Hence $AB = ED$	B2,1,0	no need to repeat reasons if given in (i)
		Angle <i>CBA</i> = Angle <i>CDE</i> Therefore <i>CBD</i> + <i>ABD</i> = <i>CDB</i> + <i>BDE</i> , hence <i>ABD</i> = <i>BDE</i>	B2,1,0	No need to restate that triangle <i>BCA</i> is congruent to triangle <i>DCE</i> if stated in (ii)

Page 5	Mark Scheme		Syllabus
	IGCSE – May/June 20	4	0459 73
8 (i)	<i>k</i> = 5	B1	or $\frac{1}{2}r^2(5) = \pi Rr$
(ii)	$2\pi R = 5r$ oe	M1	or $\frac{1}{2}r^2(5) = \pi Rr$
	$r^2 = R^2 + 10^2$ and a valid attempt to eliminate <i>R</i>	M1	
	Attempt to solve as far as $r = r = 16.5$ cao	M1 A1	condone one slip in rearrangement
(iii)	$\frac{1}{2}$ (their r) ² × 5 soi	M1	
	awrt 681 or 682	A1	
) (i)	$\frac{\sin x}{5} = \frac{\sin 30}{12}$	M1	If M0 then SC1 for a correctly orientated and sufficiently labelled
	$x = \sin^{-1}\left(\frac{5}{12}\sin 30\right) \text{ or better}$	M1	sketch
	132(.02)	A1	
(ii)	$\frac{\text{speed}}{\sin(\text{their}137.975)} = \frac{12}{\sin 30}$	M1	or $\frac{\text{distance}}{\sin 30} = \frac{6}{\sin(\text{their}137.975)}$
	correct	A1	4.48(128)
	time = $\frac{6}{16.06(682)}$ 0.37 (hours) or 22.4 mins	M1	or $\frac{4.48(128)}{12}$
	0.57 (10013) 01 22.4 mins	A1	
0 (i)	amplitude 3 period 90	B1 B1	
(ii)	$\mathbf{f}(x) = 1$	B1	or $y = 1$
(iii)	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & &$	B3, 2, 1, 0	Correct shape between 0 and 180 -2 and 4 marked on vertical axis Passing through at least 2 of (45, 1) (90, 1) and (135, 1) Both maxima and minima correctly located
(iv)	0, 45, 90, 135, 180	B2	B1 for any 3 correct

www.xtrapapers.com
www.xtrapapers.com

Page 6	Mark Scheme IGCSE – May/June 2014		Syllabus of r
			0459 730
11 (i)	Accuracy of plots	B2,1,0	-1 each error, allow tolerance and the tolerance
(ii)	Reasonable line of best fit through (3.2, 56) s = mt + b with <i>m</i> between 7 and 11 and <i>b</i> between 22 and 32	B1 B1	Syllabus 0459 -1 each error, allow tolerance ±1 mm
(iii)	Every extra 1 hour spent revising gives an increase of <i>their m</i> % in marks	B1FT	ft <i>their m</i> provided line reasonable
(iv)	Approx 43%	B1FT	
(v)	The fact that as the number of hours revising increases, the percentage increases does not mean that the number of hours revising causes the good score. It might be that for example, better students spend more time at their studies than weaker students. oe	B1	or 10 hours is outside the range of this data and it is dangerous to extrapolate beyond the data given oe
12 (a)	Two equations from 17 = 3a + b $73 = 17a + b$ $297 = 73a + ba = 4b = 5$	B1 B1 B1	correct answers for both <i>a</i> and <i>b</i> imply first B1 if no working seen
(b)	f(0) = 1650 $f(n+1) = 1.035 \times f(n)$ $n \ge 0$	B2,1,0	or f(1) = 1650 $f(n+1) = 1.035 \times f(n) n \ge 1$