MARK SCHEME for the May/June 2014 series

0459 ADDITIONAL MATHEMATICS (US)

0459/02 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus
	IGCSE - May/June 2014	0459

1 (i) (ii)	$\begin{aligned} & \mathrm{f}(3)=4 \\ & c=4 \\ & \begin{array}{l} x^{3}-2 x^{2}-x-2=(x-3)\left(x^{2}+a x+b\right)+4 \\ \text { consts: } \quad-2=-3 b+4 \quad b=2 \\ \text { coeffs of } x:-1=-3 a+b \quad a=1 \\ \text { coeffs of } x^{2}:-2=-3+a, \quad a=1 \\ \text { attempt to equate coeffs for one case } \\ \text { either } b=2 \text { or } a=1 \\ (x-3)\left(x^{2}+x+2\right)+4 \end{array} \\ & (x-x+1 \end{aligned}$	B1 B1 M1 A1 A1	$\text { OR } x - 3 \longdiv { x ^ { 2 } + x + 2 } \begin{array} { r } { \frac { x ^ { 3 } - 2 x ^ { 2 } - x - 2 } { x ^ { 2 } - x } } \\ { \frac { x ^ { 2 } - 3 x } { 2 x - 2 } } \\ { \frac { x ^ { 2 } - 3 x - 6 } { 4 } } \end{array}$ M1 for $x^{3}-3 x^{2}$ in working A1 for $x^{2}+x \ldots$ B1 for remainder of 4 or $c=4$ stated A1 for $(x-3)\left(x^{2}+x+2\right)+4$
	$2 a \quad$ Real $\begin{aligned} & (a+2 \mathrm{i})(a-2 \mathrm{i}) \\ & a^{2}+2 a \mathrm{i}-2 a \mathrm{i}-(2 \mathrm{i})^{2} \quad \text { oe } \\ & a^{2}+4 \quad \text { Real } \end{aligned}$ 4i Imaginary $\begin{aligned} & \frac{a+2 \mathrm{i}}{a-2 \mathrm{i}} \times \frac{a+2 \mathrm{i}}{a+2 \mathrm{i}} \\ & =\frac{a^{2}+4 a \mathrm{i}-4}{a^{2}+4} \\ & a^{2}=4 \\ & a= \pm 2 \end{aligned}$	B1 M1 A1 B1 M1 M1 A1 M1 A1	correctly multiplying out brackets condone omission of brackets if recovered ft their fraction, making numerator imaginary

Page 5	Mark Scheme IGCSE - May/June 2014		$\frac{\text { Syllabus }}{0459}$
8 (i) (ii) (iii)	$k=5$ $2 \pi R=5 r \text { oe }$ $r^{2}=R^{2}+10^{2}$ and a valid attempt to eliminate R Attempt to solve as far as $r=$ $r=16.5$ cao $\begin{aligned} & \frac{1}{2}(\text { their } r)^{2} \times 5 \text { soi } \\ & \text { awrt } 681 \text { or } 682 \end{aligned}$	B1 M1 M1 M1 A1 M1 A1	or $\frac{1}{2} r^{2}(5)=\pi R r$ condone one slip in rearrangement
$9 \quad$ (i) (ii)	$\begin{aligned} & \frac{\sin x}{5}=\frac{\sin 30}{12} \\ & x=\sin ^{-1}\left(\frac{5}{12} \sin 30\right) \text { or better } \\ & 132(.02 \ldots) \end{aligned}$ $\frac{\text { speed }}{\sin (\text { their } 137.975 \ldots . .)}=\frac{12}{\sin 30}$ correct $\text { time }=\frac{6}{16.06(682 \ldots)}$ 0.37 (hours) or 22.4 mins	M1 M1 A1 M1 A1 M1 A1	If M0 then $\mathbf{S C 1}$ for a correctly orientated and sufficiently labelled sketch or $\frac{\text { distance }}{\sin 30}=\frac{6}{\sin (\text { their } 137.975 \ldots)}$ or $\frac{4.48(128 \ldots)}{12}$
10 (i) (ii) (iii) (iv)	amplitude 3 period 90 $\mathrm{f}(x)=1$ $0,45,90,135,180$	B1 B1 B1 B3, 2, 1, 0 B2	or $y=1$ Correct shape between 0 and 180 -2 and 4 marked on vertical axis Passing through at least 2 of $(45,1)$ $(90,1)$ and $(135,1)$ Both maxima and minima correctly located B1 for any 3 correct

Page 6	Mark Scheme	IGCSE - May/June 2014	$\begin{gathered} \hline \text { Syllabus } \\ \hline 0459 \end{gathered}$
11 (i)	Accuracy of plots	B2,1,0	-1 each error, allow toleranco $\pm 1 \mathrm{~mm}$
(ii)	Reasonable line of best fit through (3.2, 56) $s=m t+b$ with m between 7 and 11 and b between 22 and 32	B1 B1	
(iii)	Every extra 1 hour spent revising gives an increase of their $m \%$ in marks	B1FT	ft their m provided line reasonable
(iv)	Approx 43\%	B1FT	
(v)	The fact that as the number of hours revising increases, the percentage increases does not mean that the number of hours revising causes the good score. It might be that for example, better students spend more time at their studies than weaker students. oe	B1	or 10 hours is outside the range of this data and it is dangerous to extrapolate beyond the data given oe
12 (a)	Two equations from $\begin{aligned} & 17=3 a+b \quad 73=17 a+b \quad 297=73 a+b \\ & a=4 \\ & b=5 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	correct answers for both a and b imply first B1 if no working seen
(b)	$\begin{aligned} & \mathrm{f}(0)=1650 \\ & \mathrm{f}(n+1)=1.035 \times \mathrm{f}(n) \quad n \geq 0 \end{aligned}$	B2,1,0	$\begin{aligned} & \text { or } \\ & \mathrm{f}(1)=1650 \\ & \mathrm{f}(n+1)=1.035 \times \mathrm{f}(n) \quad n \geqslant 1 \end{aligned}$

