UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

0580 MATHEMATICS

0580/04

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus
		IGCSE – October/November 2009	0580
Abbre	eviations		Cample
cao	correct answ	•	a de la companya de l
cso	correct solu	tion only	, co
dep	dependent		70%
ft	follow throu	ıgh	
isw	ignore subs	equent working	

Abbreviations

ignore subsequent working or equivalent isw

oe Special Case SC seen or implied soi

without wrong working www

1 (a) (i)	8.4(0)	B2	B1 for 1.2 or 3.6 seen or SC1 for figs 84 in answer
(ii)	$\frac{their(i)}{20} \times 100 \text{oe}$ 42 ft www2	M1 A1ft	ft their 8.4×5 After 0 scored SC1 ft for 58% or $\frac{20 - their(i)}{20} \times 100 \text{ correctly given}$
(b)	6	B2	M1 for 9 or $8 \div (1 + 8 + 3)$ soi
(c)	$\frac{2.4}{2} \times 3 \text{oe} (= 3.6 \text{ seen})$ or their (a) (i) ÷ 7 × 3	M1	
	$\frac{3}{12} \times 9$ oe (= 2.25 seen) 1.6(0) cao www3	M1 A1	
(d)	$\frac{2.40}{1.25}$ oe	M1	Implied by figs 192
	1.92 www2	A1	[11]

2 (a) (i)	Reflection (M), $x = 1$	B1,B1	If extra transformations given in part (a) then zero scored
(ii)	Rotation (R) 180 (centre) (1, 0)	B1 B1 B1	Must be "rotation". Allow half turn for 180. Allow other clear forms of (1, 0)
(iii)	Enlargement (E) (centre) (6, 4) (scale factor) 3	B1 B1 B1	Must be "enlargement" Allow other clear forms of (6, 4) e.g. vector Accept 3: 1 or 1: 3
(iv)	Shear (H) y-axis invariant oe (factor) -1	B1 B1	Must be "shear" Allow other explanation for invariant but not "parallel to" isw after <i>y</i> -axis invariant seen

Page 3	Mark Scheme: Teachers' version	Syllabus	2 er
	IGCSE – October/November 2009	0580	100

(b) (i)	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B2	B1 for correct right-hand column matrix
(ii)	$\begin{pmatrix} 1 & 0 \\ -1 ft & 1 \end{pmatrix}$	B2ft	Ft only their factor in (a) (iv) provided not zero B1ft for left-hand column in 2 by 2 matrix provided shear factor is not zero or SC1 for $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ if not ft
			[15]

Ī	T		T
3 (a) (i)	1	B1	Penalty of -1 in question if any answers given as decimals or percentages (to 3sf) alone, but isw cancelling/conversion after correct answer
(ii)	$\frac{3}{6}$ oe	B1	
(b) (i)	$\frac{2}{30}$ oe www2	B2	M1 for $\frac{2}{6} \times \frac{1}{5}$
(ii)	6–12 and 12–6 and 7–11 and 11–7 soi	M1	Evidence of all pairs adding up to 18 but no
	$k \times \frac{1}{6} \times \frac{1}{5}$ for $k = \text{integer}$	M1	extras e.g. $4/6 \times 1/6$ Without seeing the first M, $\frac{4}{6} \times \frac{1}{5}$ oe scores
	$\frac{4}{30}$ oe www3	A1	M2, $\frac{2}{6} \times \frac{1}{5}$ oe scores M1
(iii)	$\frac{4}{6} \times \frac{2}{5}$	M1	
	$\frac{8}{30}$ oe www2	A1	
(c)	$\frac{2}{6} + \frac{4}{6} \times \frac{2}{5}$ oe	M1	$\frac{2}{6}$ + their (b) (iii)
	$\frac{18}{30}$ oe cao www2	A1	
(d)	4	B2	M1 for $(1 + 1 + 6 + 7 + 11 + 12 + x) \div 7 = 6$ or better
			[13]

Page 4	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – October/November 2009	0580	100

4 (a) (i)	Accurate triangle with 2 arcs seen,	B2	SC1 if accurate but no arcs or one arc and BC are wrong way round with arcs Ft their triangle
	2 mm accuracy for lines AC and BC		and BC are wrong way round with arcs
(ii)	Accurate bisector of angle ACB , 2° accuracy and both pairs of arcs shown (accept equidistant marks on edges for 1 st set of arcs) + must meet AB	B2ft	Ft their triangle SC1ft if accurate but no/one pair of arcs or short with arcs In both (ii) and (iii) isw
(iii)	Accurate perpendicular bisector of AD 2 mm accuracy at mid-point and 2° for right angle and shows both sets of arcs + must meet AC	B2ft	ft their <i>D</i> , which must be on <i>AB</i> SC1ft if accurate but no/one pair of arcs or short with arcs
(iv)	Correct region shaded cao	B1	Dependent on correct triangle, accurate bisectors of angle ACB and side AD with correct D
(b) (i)	$(\cos C) = \frac{140^2 + 180^2 - 240^2}{2 \times 140 \times 180}$ oe	M2	(-5600/50400 or -14/126) Allow use of 7, 9 and 12 M1 for correct implicit statement Verification using 96.4 scores M2 max
	-0.111(1)or better or 96.37 to 96.38	E 1	Accept $-\frac{1}{9}$ but not a non-reduced fraction
(ii)	0.5 × 140 × 180 sin (their 96.4) oe 12521 to 12523 or 12 500 or 12520 cao www2	M1 A1	(s = 280), allow use of 7, 9 (31.3)
(iii)	(Sin $B = $) $\frac{140 \sin(their 96.4)}{240}$ oe 35.4 or 35.42 to 35.44 cao www3	M2 A1	Allow use of 7, 12 M1 for correct implicit statement SC2 for correct answer by other method
			[15]

5 (a) (i)	$(x+3)(2x+5) - x(x+4) = 59 \text{ oe}$ $2x^2 + 6x + 5x + 15 - x^2 - 4x = 59 \text{ oe}$ $x^2 + 7x - 44 = 0$	M1 A1 E1	Implies M1 (allow $11x$ for $6x + 5x$) Correct conclusion – no errors or omissions
(ii)	(x+11)(x-4)	B2	SC1 any other $(x + a)(x + b)$ where $a \times b = -44$ or $a + b = 7$
(iii)	-11, 4 www ft	B1ft	Strict ft dep on at least SC1 in (ii) allow recovery if new working seen
(iv)	$\tan = \frac{(their + ve root) + 3}{2(their + ve root) + 5} \text{oe}$ $28.3 (00) \text{ft} \text{www2}$	M1 A1ft	Could be alt trig method oe M1 where trig function is explicit ft one of their positive roots $(27.4^{\circ} (27.40 - 27.41) \text{ from } x = 11)$

Page 5	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – October/November 2009	0580	100

(b) (i)	$\frac{2x+5}{x+4} = \frac{x+3}{x} \text{ oe}$ $x^2 + 4x + 3x + 12 = 2x^2 + 5x$ $x^2 - 2x - 12 = 0$	M1 A1 E1	Must be seen. Allow ratio or correct p. Correct expansion of brackets seen (allow $4x + 3x$) Correct conclusion – no errors or omissions M1 must be seen
(ii)	$\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-12)}}{2(1)}$ or $(x-1)^2 - 12 - 1$ (B1) and $x-1 = \pm \sqrt{13}$ (B1)	B1,B1	In square root B1 for $(-2)^2 - 4(1)(-12)$ or better If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$, B1 for $-(-2)$ and $2(1)$ or better
	-2.61, 4.61 final answers www4	B1,B1	If B0, SC1 for -2.6 and 4.6 or both answers correct to 2 or more dps rot -2.6055, 4.6055
(iii)	26.4 (26.42 to 26.44) ft	B1ft	ft $4 \times a$ positive root $+ 8$ [16]

		ı	
6 (a) (i)	-16	B1	
(ii)	18 to 19	B1	
(b) (i)	-4.3 to -4.2, 1.5 to 1.6	B1,B1	
(ii)	-4.5 to -4.4 , 1.3 to 1.4	B1,B1	
(iii)	-4.5 to -4.4 < x < 1.3 to 1.4 ft	B1ft	Ft their (ii). Allow clear worded explanations and condone ≤ signs
(c)	$-\frac{30}{7}$ oe isw conversion	В2	Accept $-4\frac{2}{7}$, 30/-7 M1 for 30/7 oe fracts, isw conversion or for $-30/7$ oe soi
(d)	Ruled line passing within 2 mm of (-5, 30) and (2, 0)	B2	B1 for ruled line parallel to $g(x)$. By eye (21° to 25° to horizontal if in doubt) allow broken line
(e) (i)	Ruled horizontal line through (-3, -27)	B1	No daylight, not chord (allow broken)
(ii)	<i>y</i> = -27	B1	
(f)	Ruled lines $x = -3$, $x = -2$, $y = 40$ Region enclosed by lines $x = -3$, $x = -2$, $y = 40$ and $y = g(x)$	B1	Long enough to be boundary of region – allow broken or solid ruled lines Allow any clear indication
			[15]

Page 6	Mark Scheme: Teachers' version	Syllabus	
	IGCSE – October/November 2009	0580	

			3.
7 (a) (i)	$\frac{60}{360} \times \pi \times 2 \times 24$ oe 25.1 (25.12 to 25.14) www2	M1 A1	Accept 8 π
(ii)	$\frac{60}{360} \times \pi \times 24^2$ oe 301 or 302 or 301.4 to 301.7 www2	M1 A1	Accept 96 π
(b) (i)	$\pi d = their$ (a) (i) oe 4 (3.99 – 4.01) cao www2	M1 A1	
(ii)	24 ² – (their radius) ² 23.7 (23.66 to 23.67) cao www2	M1 A1	Alt trig method for h explicit Accept $\sqrt{560}$, $2\sqrt{140}$, $4\sqrt{35}$
(iii)	$\frac{1}{3} \times \pi \times (\text{their } r)^2 \times (\text{their } h)$ $394 - 398 \text{ cao www2}$	M1 A1	Not for $h = 24$
(c) (i)	27W	B1	
(ii)	4W	B1	If B0, B0 in (c), SC1 for 27 and 4 alone [12]

8	(a)	$5.5 < t \leq 6$	B1	Condone poor notation
	(b)	4.25, 4.75, 5.25, 5.75, 6.25, 6.75 $(2 \times 4.25 + 7 \times 4.75 + 8 \times 5.25 + 18 \times 5.75 + 10 \times 6.25 + 5 \times 6.75)$ (= 283.5) ÷ 50 or their $\sum f$ 5.67 www4	M1 M1 M1 A1	At least 5 correct mid-values seen $\sum fx$ where x is in the correct interval allow one further slip Depend on second method After M3 allow 5.7 isw conversion to mins/secs and reference to classes
	(c) (i)	17, 15	B1	
	(ii)	Rectangular bars of heights 11.3 and 15 Correct widths of 1.5 and 1 – no gaps	B1ft B1ft	ft their 17 divided by 1.5 ft their 15 11.3 plot between 11 and 12 include lines and 15 to be touching the 15 line
	(iii)	2.5 cao	B1	[10]

Page 7	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – October/November 2009	0580	12

9 (a)	$3(m-3) + 4(m+4) = -7 \times 12$ 3m-9 + 4m + 16 = -84 -13 www4	M2 A1 A1	Allow all over 12 at this stage M1 for $3(m-3) + 4(m+4)$ seen Allow all over 12 at this stage May be seen in stages
(b) (i)	0.5 oe	B1	
(ii)	$\frac{3(x+3)-2(x-1)}{(x-1)(x+3)}$ $\frac{x+11}{(x-1)(x+3)}$ final answer	M1 A1	If brackets not seen allow $3x + 9 - 2x \pm 2$ as numerator with a correct denominator isw incorrect expansion of denominator if correct brackets seen
(iii)	$\frac{x(x+11)}{(x-1)(x+3)} = 1 \text{ft or}$ $x+11 = \frac{1}{x} (x-1)(x+3) \text{ or better ft}$ $x^2 + 11x = x^2 + 3x - x - 3$ $-\frac{1}{3} \text{oe cso www3}$	M1 M1 A1	Must clear one denominator correctly Ft their (b)(ii) dep on fraction in (ii) with $(x-1)(x+3)$ oe as denominator Depend on previous M1 $-0.33(33)$
(c)	$p(q-1) = t$ oe $pq = t + p$ $\frac{t+p}{p}$ oe final answer www3	M1 M1 M1	Multiplying by $(q-1)$ Ft their first step e.g. pq only term on one side Ft their 2^{nd} step e.g. dividing by p Note: $q-1=\frac{t}{p}$ is M2 and then $q=\frac{t}{p}+1$ is M1

10 (a)	21 + 23 + 25 + 27 + 29 = 125 31 + 33 + 35 + 37 + 39 + 41 = 216	B1 B1	
(b)	Cubes	B1	
(c) (i)	n oe	B1	
(ii)	n^3 oe	B1	
(d)	$4^2 - 4 + 1 = 13$ www	E 1	Allow 16 for 4 ² , otherwise all must be seen
(e)	$7 \times 43 + 2 + 4 + 6 + 8 + 10 + 12$	B1	All must be seen
(f)	n(n-1) final answer oe	B1	
(g)	$n(n^2 - n + 1) + \text{their } (\mathbf{f})$ $n^3 - n^2 + n + n^2 - n = n^3$	M1 E1	All must be seen, no errors or omissions [10]