

Www.strapapers.com MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/22

Paper 22 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

15 Papacar Mark Scheme: Teachers' version IGCSE – May/June 2010 Syllabus 0580 Page 2

Qu.	Answers	Mark	Part Marks	
1	(a) 1	1	Part Marks Allow none	
	(b) 1	1		
2	0	2	WI1 4sin ⁻¹ 20 evaluated and rounding to 2.6 or	
			better (2.598) or $\frac{3\sqrt{3}}{2}$	
3	$2-\sqrt{3}, 2-\frac{\sqrt{3}}{2}, \frac{2}{\sqrt{3}}, \sqrt{3}$	2	M1 correct decimals seen	
4	$\frac{15a+32}{40}$ oe	2	B1 15 <i>a</i> + 32 seen	
			or SC1 $\frac{15a}{40} + \frac{32}{40}$ on answer line	
5	2 ¹⁰	2	M1 2^6 or 2^{-4} seen	
6	6.4×10^{7}	2	M1 $64 \times 100^2 \times 10^2$ or 64 000 000 oe	
7	$(A \cup B \cup C)' (A \cup C)' \cap B$	1 1	or $A' \cap B' \cap C'$ or $A' \cap (B \cup C)'$ or $A' \cap C' \cap B$	
8	(a) 43 to 47	1		
	(b) 64 to 68	2	SC1 23 to 27	
9	63.84 <u>cao</u>	3	M1 figs 1995 M1 32 × their lower bound	
10	$x = \frac{3}{P - 1}$	4	M1 for each of the four moves completed correctly	
11	(a) 10(.0)	1		
	(b) 9.80	3	M2 $\sqrt{(a)^2 - 2^2}$ or M1 PT ² + 2 ² = (a) ²	
12	(a) 440	2	M1 sin 37.1 or cos 52.9 = $\frac{h}{730}$ oe	
	(b) 3 min 20 sec	2	M1 $\frac{730}{3.65}$	
13	(a) $\begin{pmatrix} 6x-3\\ 4x+5 \end{pmatrix}$ but not $\begin{pmatrix} 6x & -3\\ 4x & (+)5 \end{pmatrix}$	2	B1 $6x - 3$ or B1 $4x + 5$ in a (2×1) matrix on answer line	
	(b) $(6x^2 + x + 5)$ cao	2	M1 any 1×1 matrix in answer space	
14	R	4	Mark the position of the letter R (or the worst unshaded region if R is missing) as follows 2	
			$\begin{array}{c} 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$	

Page 3		ne: Teachers'		Syllabus & er
	IGCSE	– May/June 2	010	0580 737
15 (a) (2, 4)		1		Syllabus 0580 Batharcanter
(b) (6, 0)		1		
(c) (i) (4,	2) ft	1 ft	From (a) and (b)	
(ii) y =	-3x + 14 oe	2	M1 sub their (c)(i) into $y = -3x + c$ oe
16 16 $\frac{1}{4}$ or 16.3		5	M1 finding the area under graph A1 130	
			$\mathbf{M1} \ \frac{1}{2} \times 16 \times v$	
			M1 equating and solving	
17 (a) 201		2	M1 $\pi \times 8^2$	
(b) 87.9 or 8	38.0	4	$\mathbf{M1} \ \frac{45}{360} \times 2 \times \ \pi \times 12 \ \dots \ \mathbf{d}$	
			M1 2 $\times \pi \times 8 \dots$	e
			M1 ft for their (4 multiples of π	(d + e) which must come from
			SC2 43.9 or 44.0	
18 (a) (i) 11		1		
(ii) 1 –	6 <i>x</i>	2	M1 $3(1-2x)-2$	
(b) -1.65, 6	.65	4	M1 $\frac{5\pm k}{2}$ M1 $$	$[(-5)^2 - 4 \times 1 \times (-11)]$
			or better	
			A1 A1	
19 (a) 6, 30, 7	U	2	B1 for 2 correct	
(b) graph		3	P2 7 plots correc	
			P1 5 or 6 plots co C1 smooth curve	through the points in the given
			range within one	small square of the plots or the
			correct position	
(c) 82.5 or f	t±1	1 ft		