UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0580 MATHEMATICS

0580/41

Paper 41 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus
		IGCSE – May/June 2010	0580
Abbro	eviations		Cally
cao	correct ansv	ver only	OH.
cso	correct solu	tion only	Se .
dep	dependent		, de la constantina della cons
ft	follow throu	igh after error	- Ox
isw	ignore subse	equent working	
oe	or equivaler	nt	

Abbreviations

follow through after error ignore subsequent working or equivalent Special Case ft isw

oe SC

without wrong working www

Qu.	Answers	Mark	Part Marks
1 (a)	11:14	1	
(b)	50	2	M1 for $(220 + 280) \div 10$ o.e.
(c)	12	2	M1 for $21 \div (4+3) \times 4$ (or 3) o.e.
(d)	280	3	M1 for 0.35 × their 500 (175) M1 dependent × 1.60
(e)	240	2	M1 for dividing 264 by 1.1 oe
2 (a) (i)	4	1	
(ii)	5	1	
(iii)	4.75	3	M1 for $1 \times 2 + 1 \times 3 + 17 \times 4 + 12 \times 5 + 6 \times 6 + 3 \times 7$ condone one slip then M1 dependent result (190) \div 40
(b)	$\frac{190+3n}{40+n}$	2	SC1 for their $190 + 3n$
3 (a)	Triangle drawn with co-ords at (1, 4), (4, 2), (4, 4)	2	SC1 for 2 correct vertices or an enlargement sf $\frac{1}{2}$ with wrong centre
(b) (i)	$ \begin{pmatrix} -8 & -8 & -2 \\ 4 & 8 & 8 \end{pmatrix} $	2	B1 each row
(ii)	Triangle drawn at (-8, 4), (-8, 8), (-2, 8) ft (i)	2ft	SC1 for 2 correct ft vertices. Can also be correct regardless of (i)
(iii)	Reflection cao $y - axis \text{ or } x = 0 \text{ cao}$	2	B1 Independent of (i) or (ii) Extra transformations lose all marks B1 Independent of (i) or (ii)
(c) (i)	Translation		B1 Extra transformations lose all marks
	$\begin{pmatrix} -10 \\ -10 \end{pmatrix} $ o.e.	2	B1
(ii)	Rotation (0, 0) 90° clockwise oe	3	B1 Extra transformations lose all marks B1 Allow word origin for (0, 0) B1 Allow – 90° or 270° (anti-clockwise)
(d)	$ \left \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right $	2	B1 each column

Page 3	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – May/June 2010	0580	80

				QH,
4				In (b) and (c) isw any cancelling or chato other forms, after correct answer seen. Penalty of – 1 for 2 sf decimals or percentages. Do not accept ratio or worded forms.
(a)	B and $\frac{2}{5}$, $\frac{1}{4}$ oe		1	Allow any reasonable explanation, e.g. 2 out of 5 greater than 1 out of 4.
(b) (i)	$\frac{1}{3}, \frac{3}{4}, \frac{2}{5}, \frac{3}{5}$		4	B1 B1 B1 B1
(ii)	$\frac{6}{12}$ oe cao	www 2	2	$\frac{1}{2}$, 0.5 etc M1 for $\frac{2}{3}$ × their $\frac{3}{4}$ i.e. product of correct branches on their tree
(iii)	$\frac{42}{60}$ oe cao	www2	2	$\frac{7}{10}$, 0.7 etc
(c)	$\frac{2}{60}$ oe cao	www2	2	M1 for their (ii) + their $\frac{1}{3}$ × their $\frac{3}{5}$ from their tree $\frac{1}{30}, 0.0333(3) \text{ etc}$ M1 for $\left(\frac{2}{3} \times \frac{1}{4} \times 0\right) + \frac{1}{3} \times \frac{2}{5} \times \frac{1}{4}$
5 (a)	200.5 to 201	www 2	2	M1 for $0.5 \times 24 \times 26 \sin 40$ oe A1
(b)	17.2 (0)	www 4	4	M2 for $26^2 + 24^2 - 2 \times 26 \times 24 \cos 40$ or M1 for $\cos 40 = \frac{26^2 + 24^2 - BD^2}{2 \times 24 \times 26}$ A2 or A1 for 295.976
(c)	12.8 (12.77)	www 4	4	B1 for Angle $C = 110$ soi accept on diagram M2 for $(BC) = \frac{24 \sin 30}{\sin 110}$ oe or M1 $\frac{\sin 110}{24} = \frac{\sin 30}{BC}$ oe i.e. a correct implicit statement soi A1
(d)	8.208 to 8.230	www 2	2	M1 for their (c) × sin40 oe

Page 4	Mark Scheme: Teachers' version	Syllabus	· A er
	IGCSE – May/June 2010	0580	80

			74
6 (a)	32.5 cao www4	4	M1 for mid-values seen M1 for use of Σfx with x 's anywhere in each interval $(10 \times 15 + 30 \times 30 + 20 \times 45)$ M1 ÷ 60 dependent on second M1
(b)	Histogram drawn	3	B1 Bars correct positions and widths – no gaps B2 Heights of bars 1, 1.5 and 2 (B1 for any two correct or for heights in the ratio 2:3:4)
7 (a)	4.53 or 4.526 – 4.530	3	SC2 for figs 453 or $4526 - 4530$ If SC0, M1 for $\pi \times (\text{figs } 31)^2 \times 15$
(b)	3.62 to 3.624 ft	2ft	M1 for their (a) × figs 8 oe
(c) (i)	$360 - 2 \times 90 - 60$ oe	2	E2 The 90's and the 60 must be clearly justified. Accept in diagram. SC1 for 60 or two 90's soi in correct positions oe e.g 360 ÷ 3 scores 0
(ii)	0.649 (0.6492 to 0.6493)	2	M1 for $\pi \times \text{figs } 62 \div 3$
(iii)	7.53 (7.527 or 7.528)	3	M1 for their (ii) × 3 M1 (indep) for 18 × figs 31 This M is spoiled by extra lengths.
(iv)	112.9 to 113 ft	1 ft	ft their (iii) × 15
8 (a)	0.25, 8, 16	3	B1 B1 B1
(b)	-5,4	2	B1 B1
(c) (i)	7 points plotted ft Curve through all 7 points exponential shape	P2ft C1ft	P1 for 5 or 6 points ft ft only if exponential shape
(ii)	6 points plotted ft Curve through all 6 points parabola shape	P2ft C1ft	P1 for 5 points ft ft only if parabola shape
(d) (i)	3.2 to 3.4	1	
(ii)	0.3 to 0.4 and 2	2	B1 B1
(iii)	3.1 to 3.4	1	
9 (a) (i)	-2.5 oe	2	M1 for $5(w+1) = 3w$
(ii)	−3 or 1	2	B1 B1 (If 0, SC1 for $y + 1 = \pm 2$)
(iii)	9.5 oe	В3	M2 for $5x + 5 - 3x + 6 = 2 \times 15$ Condone one slip (sign or numerical) on left hand side or M1 for $\frac{5(x+1)}{15} - \frac{3(x-2)}{15}$ or better, condoning one sign or numerical slip.

Page 5	Mark Scheme: Teachers' version	Syllabus	ęr
	IGCSE – May/June 2010	0580	

		1	74
(b) (i)	(u-10)(u+1)	2	SC1 for $(u + a)(u + b)$ where $ab = -10$ a + b = -9 Only ft B2 or SC1 in (i) but can recover to correct answer only if new working or if (i) not
(ii)	-1, 10	1 ft	Only ft B2 or SC1 in (i) but can recover to correct answer only if new working or if (i) not attempted
(c) (i)	$\frac{(x+1)(x+2)}{2} = x^2 \qquad \text{oe}$ $((x+1)(x+2) =)x^2 + x + 2x + 2$ $x^2 + x + 2x + 2 = 2x^2$	M1	
	$((x+1)(x+2) =)x^2 + x + 2x + 2$	B1	Allow $3x$ for $x + 2x$
	$x^2 + x + 2x + 2 = 2x^2$		
	$x^2 - 3x - 2 = 0$	E1	Established without any omissions or errors
(ii)	$x^{2} - 3x - 2 = 0$ $\frac{-(-3) \pm \sqrt{(-3)^{2} - 4(1)(-2)}}{2(1)}$	2	B1 for $\sqrt{(-3)^2 - 4(1)(-2)}$ or better seen anywhere.
			If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ then B1 for
			-(-3) and 2(1) or better
			Brackets and full line may be implied later
	-0.56, 3.56	2	B1 B1 SC1 for -0.6 or -0.562 to -0.561 and 3.6 or 3.561 to 3.562
(iii)	12.7 or 12.67 to 12.69 ft	1 ft	ft their positive x squared
10 (a)	$20x + 100y \le 1200$	1	
(b)(i)	$x + y \ge 40$	1	
(ii)	$y \ge 2$	1	
(c)	x + y = 40 cao	L1	Each line ruled and long enough to enclose
	y = 2 cao	L1	required region. If L0 , SC1 if freehand but otherwise accurate and enclose region
	Required region only region left not shaded or otherwise clearly indicated cao	R2	SC1 if one boundary error – see diagrams
(d)	5 cao	1	
(e)	50 cao, 2 cao 270 ft	2 1 ft	B1 B1 ft $5 \times \text{their } x + 10 \times \text{their } y$
11 (a)	Reasonable diagram, 25, 13, 62	4	B1 B1 B1 B1 diagram may be freehand
(b)	64, 19, 146	3	B1 B1 B1
(c)	n^2 oe		B1
/ B) /B)	2n+3 oe	2	B1
(d)(i)	20202 6	1	6. 10101 v.d. :: 1
(ii)	20202 ft	1 ft	ft 10101 × their <i>k</i>