UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0580 MATHEMATICS

0580/43

Paper 43 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	age 2	Mark Scheme: Teachers' version	Syllabus
		IGCSE – May/June 2010	0580
Abbrev	viations		ah
cao	correct answer	only	Oh.
cso	correct solution	n only	36
dep	dependent		, in
	follow through	n after error	· OA
isw	ignore subsequ	uent working	
oe	or equivalent	-	
SC	Special Case		

Abbreviations

follow through after error ignore subsequent working or equivalent Special Case ft isw

oe SC

without wrong working www

Qu.	Answers	Mark	Part Marks
1 (a) (i)	2:3	1	
(ii)	$30 \div 2 \times 3$ o.e.	E1	Allow 2 : 3 (oe) = 30 : 45
(iii)	60	2	M1 for $3 \div 5 \times 100$ oe
(b)	31.83	3	SC2 for 31.827 as final answer or not spoiled. or M1 for × 1.03 twice oe
(c)	1.5	2	M1 for $\frac{30 \times r \times 5}{100} = 2.25$ oe or for $2.25 \div 5$ then $\div 30 \times 100$
2 (a)	5.83 (5.830 to 5.831)	2	M1 for $3^2 + 5^2$
(b)	113. 6 (114 or 113.5 to 113.6) www 4	4	Any other method must be complete M2 for $(\cos C) = \frac{5^2 + 8^2 - 11^2}{2 \times 5 \times 8}$ or M1 for correct implicit expression A2 (A1 for -0.4 or $-\frac{2}{5}$)
(c)	25.8 (25.77 to 25.85) cao www 3	3	M1 for $0.5 \times 5 \times 8 \times \sin$ (their angle C) o.e must be full method e.g. Hero's formula. M1 for $0.5 \times 3 \times 5$ oe

Page 3	Mark Scheme: Teachers' version	Syllabus	
	IGCSE – Mav/June 2010	0580	

		1	7%
3			Throughout this question isw any cand or changing to other forms, after correct answer seen. Do not accept ratio or worded forms.
(a)	0.4, 0.1 oe	1	
(b) (i)	1	1	`
(ii)	0.7 oe ft	1 ft	ft their first three probabilities
(c) (i)	0.04 oe	1	
(ii)	0.03 oe ft	2ft	M1 for their 0.1×0.3
(iii)	0.12 oe ft	3ft	ft their 0.1, their 0.4 and their (c)(i) M2 for their $0.4 \times \text{their } 0.1 + \text{their } 0.1 \times \text{their } 0.4 + 0.2 \times 0.2$ (or their (c)(i)) or M1 for any two of these products added or two of each
(d)	0.147 oe ft	2 ft	ft their (b)(ii). M1 for their 0.7 × their 0.7 × (1 – their 0.7)
4 (a)	Triangle drawn, vertices (6, 10), (10, 10), (10, 8)	2	SC1 reflects correctly in $x = 6$
(b)	Triangle drawn, vertices (2, 8), (6, 8), (6, 10)		SC1 for translation $\begin{pmatrix} -4 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 6 \end{pmatrix}$
(c)	Translation	2	B1 All part marks spoiled if extra transformation
	$\begin{pmatrix} 4 \\ -6 \end{pmatrix}$ o.e.		B1 Indep. Allow other clear forms or words
(d) (i)	Enlargement	3	B1 All part marks spoiled if extra transformation
	(centre) (4, 6) (factor) 0.5		B1 Indep. B1 Indep.
(ii)	i) $\frac{1}{4}$ or 0.25 oe		
(e) (i)	Stretch	3	B1 All part marks spoiled if extra transformation
	y-axis o.e invariant (factor) 0.5		B1 Indep B1 Indep
(ii)	$\begin{pmatrix} 0.5 & 0 \\ 0 & 1 \end{pmatrix} \text{ ft}$		ft their factor in (e)(i) only if stretch SC1 (also ft) for left-hand column

Page 4	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – May/June 2010	0580	12

5 (a) (i)	Similar	1	Accept enlargement
(ii)	2.7	2	Accept enlargement M1 for $\frac{PQ}{3.6} = \frac{3}{4}$ oe M1 for $\left(\frac{3}{3}\right)^2$ or $\left(\frac{4}{3}\right)^2$ on seen
(iii)	3.15	2	M1 for $\left(\frac{3}{4}\right)^2$ or $\left(\frac{4}{3}\right)^2$ o.e seen
			If $\frac{1}{2}ab\sin C$ used or base and height used then
			must be full method for M1
(b) (i)	29	1	
(ii)	61 ft	1 ft	ft 90 – their (i) if (i) is acute
(iii)	61 ft	1 ft	ft their (ii) if their (ii) is acute, but can recover
(iv)	119 ft	1 ft	ft 180 – their (iii)
(c) (i)	20	1	
(ii)	110	3	M1 for adding 6 angles going up 4 each time
			and M1 (indep) for 720 seen and not spoiled $(6A + 60 = 720 \text{ o.e. scores M2})$
6 (a)	-2.5, -2, 2, 2.5	2	B1 for 3 correct
(b)	4 points correct ft Correct shape curve through at least 9 points over full domain Two branches either side of <i>y</i> -axis and not touching it	P1ft C1ft B1	ft only if correct shape and isw any curve outside domain (including crossing <i>y</i> -axis) Independent
(c)	-1, 0, 1	2	B1 for two correct, each extra –1
(d)	$(x) \le -1$ and $(x) \ge 1$ as final answer	2	B1 B1 Condone inclusive inequality, allow in words, condone inclusion of -4 and $+4$ as limits. $1 < x < -1$ or $-1 > x > 1$ SC1 $-1 < x < 1$ scores 0 . Each extra -1 if more than two answers.
(e) (i)	Correct ruled line though $(-2, -3)$ to $(1, 3)$	2	SC1 for ruled line gradient 2 or <i>y</i> -intercept 1 from $x = -2$ to 1 or correct line but short or good freehand full line.
(ii)	Some reasonable indication on graph for both points	1	e.g. points of intersection marked, or, lines drawn from point of intersection to <i>x</i> -axis etc
(iii)	$x^{2} + 1 = 2x^{2} + x$ oe then $x^{2} + x - 1 = 0$	3	E2 Must be intermediate step before answer – no errors or omissions
	or $\frac{1}{x} = x + 1$ then $1 = x^2 + x$ then $x^2 + x - 1 = 0$		or E1 Either no intermediate step or one error or omission.
ı	1, –1		B1

Page 5	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – May/June 2010	0580	100

		ı	6
7 (a)	(Mode) = 11 $(Modian) = 12.5$	1	B1 M1 for evidence of finding mid-value e.g. $(126 + 1) \div 2$ oe, (condone $126 \div 2$) M1 for correct use of Σfx (allow one slip) M1 (dependent) for $\div 126$
	(Median) = 12.5	2	M1 for evidence of finding mid-value e.g. $(126 + 1) \div 2$ oe, (condone $126 \div 2$)
	(Mean) = 12.8 (0)	3	M1 for correct use of Σfx (allow one slip)
			M1 (dependent) for ÷ 126
(b) (i)	15, 27, 30,	3	B1 B1 B1
(ii)	9.67 (9.674 to 9.675) cao www 4	4	M1 for mid-values, condone one error or slip
			M1 for use of Σfx , with x's anywhere in intervals and their frequencies (allow one slip)
			M1 (dependent on second M) for ÷ 126 (or
			their Σf) isw any conversion into hours and minutes
8 (a)	40 ÷ 10 and 12 ÷ 6 (or 12 ÷ 3) and	E2	M1 Allow drawing for M1 but must see
	$6 \div 3$ (or $6 \div 6$) oe $4 \times 2 \times 2 = 16$ reducing (seen) to 16		reaching 16 for E2 Reaching 16 without any errors or omissions
	$4 \wedge 2 \wedge 2 = 10$ reducing (seen) to 10		40×12×6
			then (b)
			or $4 \times 2 \times 2 = 16$ or $4 \times 4 \times 1 = 16$ without other working
			odici working
(b)	180	1	
(c) (i)	23 640 (allow 23 600)	2	M1 for their $180 \times 8 \times 16 + 600$
(ii)	23.64 (or 23.6) ft	1 ft	ft their (i) ÷ 1000
(11)	20.0. (01.20.0)	110	(4)
(d) (i)	216	2	M1 for $(10 \times 6 + 10 \times 3 + 6 \times 3) \times 2$ oe
(ii)	8.64	3	M1 for their (i) \times 16 \times 25
			M1(indep) for $\div 100^2$ Figs 864 imply M1 only
(e)	75.3 (75.26 to 75.33)	3	M1 for $\frac{4}{2}\pi \times 0.5^3$ (0.5235) Implied also by
			104.7
			then M1 (dep) for their (b) $-200 \times$ their
			$\frac{4}{3}\pi \times 0.5^3$ must be giving positive answer
(f)	0.842 (0.8419 – 0.8421)	3	M1 for $(\frac{4}{3}\pi r^3) = 50 \div 20$
(1)	0.0.12 (0.0.11) 0.0.121)		
			then M1 for $\frac{50 \div 20}{4}$ (0.5966 to 0.5972)
			$\frac{\pi}{3}$
			After 0 scored SC1 for 50 (implied by 2.29)
			After 0 scored SC1 for $\sqrt[3]{\frac{50}{4\pi}}$ (implied by 2.29)
			V 3

Page 6	Mark Scheme: Teachers' version	Syllabus	ēL
	IGCSE – May/June 2010	0580	

		738
8w + 2j = 12	5	B1 condone consistent use of other varia B1 M1 allow one numerical slip A1 A1 If A0, SC1 for 1.80, 1.05
		B1 M1 allow one numerical slip
Water 1.05, Juice 1.8(0)		A1 A1 If A0, SC1 for 1.80, 1.05
$\frac{2}{2} + \frac{4}{4} - \frac{40}{40}$ or	МЭ	M2 If M0 SC1 for $\frac{2}{3}$ or $\frac{4}{3}$
y - y - 4 - 60	1 ∨1 ∠	M2 If M0, SC1 for $\frac{2}{y}$ or $\frac{4}{y-4}$
$2\times3(y-4)$ $3\times4y$ $2y(y-4)$	E2	E2 Compat complygion models of with out and
$\frac{1}{3y(y-4)} + \frac{1}{3y(y-4)} = \frac{1}{3y(y-4)}$	E2	E2 Correct conclusion reached without any errors or omissions including at least 3
oe or better		intermediate steps.
6(y-4) + 12y = 2y(y-4) oe		or E1 if any one slip, error or omission that is
		recovered or correct with only two steps.
$y^2 - 13y + 12 = 0$		
	2	SC1 for $(y+a)(y+b)$ where $ab = 12$ or
		a+b=-13
1, 12 ft	1 ft	Only ft SC1 but can recover to correct answer
		with new working or if (ii) not attempted
8 ft	1 ft	ft a positive root –4 if positive answer
$\frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-4)}}{2}$	2	B1 for $\sqrt{(-1)^2 - 4(1)(-4)}$ or better
2(1)		If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$
		If in form $\frac{r}{r}$ or $\frac{r}{r}$
		then B1 for $-(-1)$ and $2(1)$ or better
		Brackets and full line may be implied later
-1.56, 2.56	2	B1 B1 If B0, SC1 for -1.6 or -1.562 to
		-1.561 and 2.6 or 2.561 to 2.562
Dots all correctly placed in Diagram 4	1	
Column 4 16 25 16 41	7	B2 or B1 for three correct
Column 5 25, 41, 20, 61	,	B2 or B1 for three correct
Column n : n^2 , $4n$, $n^2 + (n+1)^2$ oe		B1 B1 B1 oe likely to be $(n-1)^2 + n^2 + 4n$ or
		$2n^2 + 2n + 1$
		After any correct answer for column n , apply isw
79 601 cao	1	
		ft their 4 <i>n</i> linear expression only
000 II	111	te then 4n inical expression only
12 cao	1	
	12w + 18j = 45 Correctly eliminating one variable Water 1.05, Juice 1.8(0) $ \frac{2}{y} + \frac{4}{y-4} = \frac{40}{60} \text{ oe} $ $ \frac{2 \times 3(y-4)}{3y(y-4)} + \frac{3 \times 4y}{3y(y-4)} = \frac{2y(y-4)}{3y(y-4)} $ oe or better $6(y-4) + 12y = 2y(y-4) \text{ oe} $ $6y - 24 + 12y = 2y^2 - 8y \text{ oe} $ $0 = 2y^2 - 26y + 24$ $y^2 - 13y + 12 = 0$ $(y-1)(y-12)$ 1, 12 ft 8 ft $ \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-4)}}{2(1)} $ $-1.56, 2.56$ Dots all correctly placed in Diagram 4 Column 4 16, 25, 16, 41 Column 5 25, 41, 20, 61 Column n: n^2 , 4n, $n^2 + (n+1)^2$ oe 79 601 cao 800 ft	12w + 18j = 45 Correctly eliminating one variable Water 1.05, Juice 1.8(0) $ \frac{2}{y} + \frac{4}{y-4} = \frac{40}{60} \text{ oe} $ $ \frac{2 \times 3(y-4)}{3y(y-4)} + \frac{3 \times 4y}{3y(y-4)} = \frac{2y(y-4)}{3y(y-4)} $ oe or better $6(y-4) + 12y = 2y(y-4) \text{ oe} 6y-24+12y=2y^2-8y \text{ oe} 0=2y^2-26y+24 y^2-13y+12=0 $ $(y-1)(y-12)$ 2 1, 12 ft 1ft 1ft $ \frac{-(-1) \pm \sqrt{(-1)^2-4(1)(-4)}}{2(1)} $ 2 Dots all correctly placed in Diagram 4 1 Column 4 16, 25, 16, 41 Column 5 25, 41, 20, 61 Column n: n^2 , $4n$, $n^2+(n+1)^2$ oe 11ft 7 79 601 cao 1 1 16t