www.xtrapapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	
	IGCSE – May/June 2011	0580	

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working

Qu.	Answers	Mark	Part Mark
1	53.1	2	B1 C = 36.9 seen, must have C stated or marked on the diagram or M1 sin $A = \frac{4}{5}$ or tan $A = \frac{4}{3}$ but must have A stated
2	$\sqrt{3}+\sqrt{6}$, π	2	-1 for each error or omission
3	Working must be shown	2	M1 $\frac{14}{9}$ and $\frac{16}{9}$ M1 $\frac{14}{16} = \frac{7}{8}$ oe or visible cancelling
4	0.8^{2}	2	M1 conversion of $\frac{16}{27}$ (= 0.5(9)) and 0.8^2 (= 0.64) to decimals seen
5	(6)€ or euros (with correct working)	2	M1 one of 6 × 1.9037 or 11.5 ÷ 1.9037 or 11.5 ÷ 6 seen
6	3.322 cao	2	B1 3.3219() or 3.32(20) seen
7	1.85×10^4	3	B2 18500 oe seen or M1 $4x = 74000$ or $x = 2 \times 10^4 - 1.5 \times 10^3$
8	16	3	M1 $p = k\sqrt{q}$ A1 $k = 1.6$ or 8/5
9	1275, 1425	3	B1 85 or 95 or 0.85 or 0.95 M1 their LB or UB × 1500 where 85 ≤ LB < 90 90 < UB ≤ 95
10	(a) (0)700 or 7 am (b) 1700 or 5 pm	2	M1 100 – (5 × their(22 – 6) + their(13 – 8)) or better soi
11	$\frac{4+bc}{c} \text{ or } \frac{4}{c} + b \text{ cao}$	3	M1 correct move completed M1 second correct move completed M1 third correct move completed
12	$x = 1$ $y = 0.2 \text{ or } \frac{1}{5} \text{ only}$	3	M1 consistent mult and add/subtraction A1 one value correct after M awarded
13	(a) 72 (b) 36	1	
	(c) 54	2ft	ft $90 - (b)$ M1 $POQ = 108$

www.xtrapapers.com

Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2011	0580

	() 04	4	on on
14	(a) 84	1	all.
	(b) 15	1	The state of the s
	(c) 6.28	2	M1 $\frac{120}{360} \times 2 \times \pi \times 3$ oe
15	$\frac{1-3x}{(x+1)(x+5)} \text{www}$	4	M1 $(x + 1)^2 - x(x + 5)$ oe B1 $x^2 + x + x + 1$ B1 denominator(s) $(x + 1)(x + 5)$ or $x^2 + 6x + 5$
16	(a) $\frac{1}{2}$ a $-\frac{1}{2}$ c oe	2	M1 correct but unsimplified e.g. $\frac{1}{2}$ a + $-\frac{1}{2}$ c
	(b) $\frac{3}{4}$ a + $\frac{3}{4}$ c oe	2	M1 correct but unsimplified
17	(a) $4x^{-24}$ or $\frac{4}{x^{24}}$	2	B1 $4x^n$ B1 $\frac{k}{x^{24}}$ or kx^{-24} for any numerical k , n
	(b) $\frac{x^2}{16}$	2	B1 $\frac{x^2}{k}$ or B1 $\frac{x^n}{16}$ SC1 $(\frac{x}{4})^2$
18	(a) (6, 1½)	1	
	(b) $y = -\frac{1}{5}x + 4$ oe	3	B1 correct numerical format B1 correct m B1 correct c
19	(a) 8	1	
	(b) $4x - 9$	2	M1 $2(2x-3)-3$ seen
	(c) $2^{2(x+1)}$ or 2^{2x+2} or 4^{x+1}	2	$M1 (2^{x+1})^2$ seen
20	(a) (i)	2	B1 correct line B1 2 sets of correct arcs
	(ii) R	2	B1 correct line B1 two sets of correct arcs
	(b)	1	correct region, shaded or shown by the letter R
21	(a) (i) (0) brackets essential	2	M1 $6 \times 2 + 3 \times -4$ or $12 + -12$
	(ii) $\begin{pmatrix} 12 & 18 \\ -8 & -12 \end{pmatrix}$ (b) $\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}$	2	M1 any 2 × 2 matrix with 2 elements correct
	(b) $\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}$	2	$\begin{bmatrix} \mathbf{B1} & \frac{1}{2} \begin{pmatrix} a & c \\ b & d \end{pmatrix} \text{ seen} \\ \text{or} \end{bmatrix}$
			$\mathbf{B1} \ k \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix} \text{ seen}$