UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0580 MATHEMATICS

0580/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	8
		IGCSE – May/June 2012	0580	700
Abbr	eviations			Carry
cao	correct answe	r only		Office
cso	correct solution	on only		Se .
dep	dependent			200
ft	follow throug	h after error		On
isw	ignore subseq	uent working		7
oe	or equivalent	·		

Abbreviations

follow through after error ft ignore subsequent working or equivalent isw

oe Special Case SC

without wrong working anything rounding to seen or implied www art soi

1 (a) (i)	[0]5 38 oe	1	Allow 5h 38 but not 5h 38mins
(ii)	92.7 [92.72 to 92.73] oe	2	Allow $92\frac{8}{11}$ or $\frac{1020}{11}$ M1 for $850 \div$ their 9 h 10 min in hours oe Allow $850 \div 9.1$ for M1
(b) (i)	204 or 203. 9[0] to 203.91	3	M1 for 160 × 255 + 330 × 190 + 150 × 180 [130 500] M1 dep for ÷ 640
(ii)	$ \begin{vmatrix} 640 \div (4+3+1) \\ \times 3 \ [= 240] \end{vmatrix} $	M1 M1	[Can be in either order or shown together] Accept $240 \div 3 \times (4 + 3 + 1) = 640$ for M2
(iii)	150 www 3	3	M2 for 240 ÷ 1.6 oe or M1 for recognition of 240 = 100 + 60 %
(c)	11 cao www 3	3	M1 for figs 340 or figs 550 ÷ speed [e.g. figs 188, figs 306] – can be spoiled by further work and M1 for correct conversion of units to give answer in seconds e.g. speed = 50 m/s M's independent

Page 3	Mark Scheme: Teachers' version	Syllabus	.0	V
_	IGCSE – May/June 2012	0580	100	

				My.
2	(a)	$[\sin =] \frac{10\sin 95}{12}$	M2	M1 for correct implicit equation
		56.1 (56.11 to 56.12) www 3	A1	.8
	(b)	$12^2 + 17^2 - 2 \times 12 \times 17\cos 30$ oe 8.93 [8.925] www 4	M2 A2	M1 for correct implicit equation A1 for 79.66 to 79.67 or 79.7
	(c) (i)	126 or 126.1 (126.11 to 126.12)	1ft	ft their (a) + 70 [provided less than 360]
	(ii)	306 or 306.1 (306.11 to 306.12)	1ft	ft 180 + their (c)(i) [provided less than 360]
	(d)	$[\sin =] \frac{17\sin 30}{their(b)} \text{ oe or}$ $[\cos =] \frac{12^2 + (their(b)^2 - 17^2)}{2 \times 12 \times their(b)} \text{ oe}$	M2	M1 for correct implicit equation [107.7 to 107.9 or 108 or 72 or 72.1 to 72.3]
		180 – 95 – their (a)	M1	e.g. 28.88 to 28.9 seen – may be on diagram Alt methods possible e.g. $\left[\sin ABC = \right] \frac{12\sin 30}{their(b)}$ [42.2] gets M1
				then 360 – 95 – 30 – their (a) – their 42.2 gets M2 dep on previous M1
		137 [136.5 to 136.9] www 4	A1	isw reflex angle 223 or 223.1 to 223.5 after correct answer seen
3	(a)	Triangle with vertices (6, 4), (9, 4), (9, 6)	2	Ignore labels and condone good freehand in parts (a), (b) and (d)(i)
				SC1 for translation $\binom{5}{k}$ or $\binom{k}{3}$
	(b)	Triangle with vertices (11, 1), (8, 1), (8, 3)	2	SC1 for reflection in $y = 6$
	(c) (i)	Rotation	1	If other transformations in addition, then 0, 0, 0
		90° [anticlockwise] oe [centre] (0, 0) oe	1 1	e.g. O, origin
	(ii)	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	2	B1 each column
	(d) (i)	Triangle with vertices (1, 3), (4, 3),	2	SC1 for (1, 3) and (4, 3), or (4, 9)
	(ii)	$ \begin{pmatrix} (4,9) \\ \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} $	2	B1 right-hand column or $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$

Page 4	Mark Scheme: Teachers' version	Syllabus	.0	r
	IGCSE – May/June 2012	0580	200	

			18.
4 (a) (i)	Median = 2 www 2	2	M1 for identifying mid-value [e.g. List with or 10 th and 11 th seen in working] or 10.5 soi
	Mode = 3	1	29
(ii)	54 www 2	2	M1 for $3 \div 20 \times 360$ oe
(b)	184 www 4	4	M1 for 175, 185, 195 soi M1 for $5 \times a + 12 \times b + 3 \times c$ where a, b, c are in correct interval, including boundaries [3680] M1 (dep on 2^{nd} M) \div 20
5 (a) (i)	980 (979.6 to 980.3) www 4	4	M3 for $(\pi \times 8^2 \times 6) - (2 \times \frac{4}{3} \times \pi \times 3^3)$ Or M1 for $\pi \times 8^2 \times 6$
			and M1 for $[2\times]\frac{4}{3}\times\pi\times3^3$
(ii)	0.98[0] (0.9796 to 0.9803)	1ft	ft their (i) \div 1000 but not in terms of π
(b)	1.2[0] (1.195 to 1.196)	2ft	ft their (a)(i) × 1.22 ÷ 1000 or their (a)(ii) × 1.22 SC1ft for figs 12[0] or 1195 to 1196 Apply ft to SC
(c)	4.88 or 4.87 (4.871 to 4.878) www 2	2ft	ft their (a)(i) ÷ $\pi 8^2$ provided their (a)(i) is not 384 π or 1206 M1 for their (a)(i) ÷ $\pi 8^2$

Page 5	Mark Scheme: Teachers' version	Syllabus	V
	IGCSE – May/June 2012	0580	8-

			3
6 (a) (i)	180	1	andridge
(ii)	20	1	The state of the s
(b)	220	1	
(c) (i)	$\frac{170}{240}$ oe isw	1	Allow 0.708, 0.7083 or % equivalents
(ii)	$\frac{150}{240}$ oe isw	1	Allow 0.625 or % equivalents
(d)			Penalise once for first correct none 4 dp dec answer to at least 3sf or correct fraction answer in parts (d) and (e)
(i)	0.5617	2	Accept 56.1715%, do not accept 0.562 ww M1 for $\frac{180}{240} \times \frac{179}{239}$ [0.56171 to 0.56172], $\frac{537}{956}$ oe
(ii)	0.3766	3	Accept 37.6569% M2 for $2 \times \frac{180}{240} \times \frac{60}{239}$ oe [0.37656 to 0.37657] $\frac{90}{239}$ oe Or M1 for one correct product seen, implied by 0.18828 or 0.1883
(e)	0.6937	3	Accept 69.3669%, do not accept 0.694 ww M2 for $\frac{150}{180} \times \frac{149}{179}$ [0.69366 to 0.69367] $\frac{745}{1074} \text{ oe}$ or M1 for $\frac{150}{180}$ oe soi

Page 6	Mark Scheme: Teachers' version	Syllabus	10	
	IGCSE – May/June 2012	0580	123	

7 (a)	1,, 11.3[1] , 16	3	B1 each P2ft for 7 or 8, P1ft for 5 or 6. ft only if correct shape and covers the domain
(b)	9 points plotted	P3ft	P2ft for 7 or 8, P1ft for 5 or 6.
	Smooth curve through at least 8 points and exponential shape	C1ft	ft only if correct shape and covers the domain $0 < x < 4$
(c)	2.3 < x < 2.35	1	
(d)	0.4 < x < 0.5, 3.25 < x < 3.35	M1 A1 A1	y = 3x ruled to cut curve at all possible points.
(e)	Reasonable tangent with gradient 3	M2	Or M1 for any tangent
	(their x , their y)	A1	Dep on M2. Their point of contact
8 (a)	u = 24 $v = 92$ $w = 184$	2 1 1ft	SC1 for angle $DBA = 88$ or $u = \text{angle } CDY$ ft 2 × their v Allow all seen in diagram
(b)	10.8	2	M1 for area factor of 3 ² soi e.g. dividing by 9
(c) (i)	18	2	M1 for $4x + x = 90$ or better
(ii)	72	2ft	ft 90 – their x or $4 \times$ their x
(iii)	54	1	M1 for angle K or $I = 90$ – their x or $4 \times$ their x Allow all seen in diagram

Page 7	Mark Scheme: Teachers' version	Syllabus	.0	V
_	IGCSE – May/June 2012	0580	100	

			2
9 (a) (i)	$-\frac{1}{3}$ oe	2	B1 for $f(2) = -3$ soi
(ii)	_7	1	26.C
(b)	$\frac{x-2}{x}$ final answer www	2	M1 for $1 - \frac{2}{x}$ seen
(c)	$y-1 = x^{3} \text{ or } x = y^{3} + 1$ $x = \sqrt[3]{y-1} \text{ or } x-1 = y^{3}$ $\sqrt[3]{x-1} \text{ oe final answer www2}$	M1 A1	i.e. two correct steps For M1, accept a correct reverse flowchart After 0 scored allow SC1 for $\sqrt[3]{x-1}$ seen then spoilt
(d)	A, F, D	3	B1 each
(e)	29	2	M1 for $x = k(2)$ or $\sqrt[5]{x+3} = 2$ (Variable can be y in second method)
10 (a)	1.3[0]	3	M2 for $(31.7[0] - 7) \div (12 + 7)$ or better Or M1 for $12x + 7(x + 1) = 31.7[0]$ or better or $31.7[0] - 7$ or better)
(b) (i)	$\frac{36}{y} - \frac{36}{y+1} = 25 \text{oe}$ $36(y+1) - 36y = 25y(y+1) \text{oe}$ $36y + 36 - 36y = 25y^2 + 25y \text{oe}$	M2	SC1 for $\frac{36}{y}$ oe or $\frac{36}{y+1}$ oe seen Accept both all over $y(y+1)$ Must see at least one of these lines before E mark
	$25y^2 + 25y - 36 = 0$	E 1	Final line reached without any errors or omissions
(ii)	(5y+9)(5y-4)	2	Accept $(25y - 20)(y + 1.8)$ oe SC1 for $(5y + m)(5y + n)$ where $mn = -36$ or m + n = 5
(iii)	-1.8 oe, 0.8 oe	1ft	ft only SC1 from (b)(ii)
(iv)	2.6[0]	1ft	ft 2 × positive root from (b)(iii) +1 Dep on pos and neg root in (b)(iii)

Page 8	Mark Scheme: Teachers' version	Syllabus	.0
	IGCSE – May/June 2012	0580	No.

		1	78
11 (a)	$33,41$ $16\pi,25\pi$	1	Maria Mariage
	$20\pi,30\pi$	1 2	B1 each
(b) (i)	8n + 1 oe final answer	2	e.g. $9 + 8(n-1)$, condone $n = 8n + 1$ SC1 for $8n + k$
(ii)	137 www2	2	M1 for their (b)(i) = 1097
(c) (i)	$n^2\pi$ oe final answer	1	
(ii)	$9n^2\pi$ oe final answer	1	Allow $(3n)^2 \pi$
(d)	$n(n+1)\pi$ oe final answer	2	SC1 for a quadratic expression e.g. $n(n+1)$, $n^2 + 5$, $n^2 + n \pi$