CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.xtrapapers.com

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0580	21

Abbreviations

cao	correct answer only
1	1 1 /

dep dependent

 \mathbf{FT} follow through after error ignore subsequent working

isw or equivalent

oe Special Case SC

nfww not from wrong working

seen or implied soi

Question	Answers	Mark	Part Marks
1	1.37	2	B1 for 0.866 or $\frac{\sqrt{3}}{2}$ or 0.5 or $\frac{1}{2}$ or B1 for 1.366 as final answer
2	$18\frac{1}{18}$	2	M1 for $\frac{2}{36} + \frac{36}{2}$ or better
3	30	2	M1 for $n - 8 = 22$ or $\frac{n}{2} = 15$
4 (a)	$\frac{5 \times 2}{20}$	1	
(b)	0.5 or $\frac{1}{2}$ cao	1	
5	$0.5^3 \ 0.5^2 \ 0.5 \ \sqrt[3]{0.5}$	2	B1 for 0.25, 0.125 and 0.793 seen or for three in correct order
6	1.6[0]	3	M1 for 800 × 1.5 and M1 for <i>their</i> 1200 ÷ 750
7	$4\pm\sqrt{y-6}$	3	M1 for <i>their</i> 6 moved correctly M1 for <i>their</i> $$ taken correctly M1 for <i>their</i> 4 moved correctly
8	$\frac{2}{x(x+1)}$	3	B1 for common denominator $x(x+1)$ seen M1 for $2(x+1) - 2x$ oe or better
9 (a)	119	3	M2 for $18 \times 6 + 11$ oe or B1 for 18 or 11 or 108
(b)	[0] 1 [00] pm cao	1	
10 (a)	(a+b)(x+y)	2	B1 for $a(x + y) + b(x + y)$ or $x(a + b) + y(a + b)$
(b)	(x-1)(3x-2)	2	B1 for $(x-1)(3(x-1)+1)$ If B0 then SC1 for $(x+a)(3x+b)$ where $3a+b=-5$ or $ab = 2$ or $3(x-1)(x-\frac{2}{3})$

www.xtrapapers.com

	Page 3		Mark Scheme			Syllabus	Paper	
			IGCSE – May/Jui	ne 2014				
	$8^2 + 2^2 - 9^2$							
11		113.9	0 to 114.0	4		$=] \frac{8^2 + 2^2 - 9^2}{2 \times 8 \times 2}$		
					or M1 for $9^2 = 8^2 + 2^2 - 2 \times 8 \times 2 \times \cos x$			
					A1 for -0.40	6 or -0.4063 to -0	0.4062 or $-\frac{13}{22}$	
					32 If 0 scored SC2 for 54.3[1] or 11.7 or 11.71 to			
					11.72			
					SC1 for $[\cos =] \frac{9^2 + 2^2 - 8^2}{2 \times 9 \times 2}$ or			
					2			
					$[\cos =]\frac{9^2 + 2}{2}$	<u>9×8</u>		
12	(a)	2×1	0^{10}	2	B1 for 20 × 1	10 ⁹ or 20 000 000 00	00	
	(b)	1.25	$\times 10^{-1}$	2	B1 for 0.125	5 oe		
13	(a)	32		2	B1 for <i>AOC</i>	= 116		
15	(a)	32		2	DI 101 AUC	- 110		
	(b)	35		2	B1 for <i>CDA</i>	= 122		
14		v – –	$\frac{2}{3}x - 2$ oe	4	B1 for (9, 4))		
		y = z	3^{-2} oc		and		2	
					M2 for $y = k$	$kx - 2 \ (k \neq 0) \text{ or } y =$	$=\frac{2}{3}x + k \ (k \neq 0)$ o	or
					$\frac{2}{3}x-2$			
					5	2 2		
					or M1 for y	$=\frac{2}{3}x \text{ or } \frac{2}{3}x+k$ (k	$k \neq 0$)	
15		[0], 1	2.2	4	M1 for movi	ng the 5 correctly		
13		[0], 1	, 2, 3	-	M1 for colle	cting <i>their</i> terms		
16	()	0			A1 for a corr	rect inequality for x	$eg [0 \le] x < 4$	
16	(a)	8		2	B1 for 2^{12} or	r 4096		
	(b)	$2q^{\frac{3}{2}}$			B2 for $kq^{\frac{3}{2}}$ as	s the enswer		
	(0)	29-		3	$\mathbf{D}\mathbf{Z}$ for kq^2 as	s the answer		
						and B1 for $q^{\frac{1}{2}}$ or nf	fww.	
17	(a)	corre	ct working	2	_	$\frac{\text{and B1 for } q^2 \text{ of n}}{\text{iday} = 5 \text{ or } 360 \div 7}$		
	()		<u>-</u>	_		$24 \times 5 [= 120]$		
					or 24			
					M2 for $\frac{24}{72}$	<360[=120] oe		
	(b)	6 nfw	/W	3		+ 120 + x + 2x = 36 entified as the require		
18	(a)	corre	ct working	2	_	$\frac{1}{2}$ or $\sqrt[3]{8} = 2$ AND		$\frac{1}{2} = 2$
			-		V 8 oe	2	2 2	2
					or			
					B1 for $3\sqrt{\frac{1}{2}}$	or $\sqrt[3]{8}$ or $8 = 2^3$ or	$\frac{1}{-}=(\frac{1}{-})^3$	
					1 101 18		8 2'	

www.xtrapapers.com

Page	4	Mark Scheme			Syllabus	Paper
		IGCSE – May/June 2014		0580	21	
(b)	147 c	or 146.5 to 146.6	4	or M1 for $\frac{1}{3} \times \pi$ and M1 for $\frac{1}{3} \times \pi$ and		
19	1.38	or 1.39 or 1.384 to 1.389	7	M3 [Area Δ or M1 for [Δ and M1 for Area and M1 for Area	$= \frac{1}{2} \times 8 \cos 60 \times 8$ $AE = \frac{1}{2} \cos 60 \text{ and } \frac{1}{2}$	sin 60 M1 for [<i>ED</i>] = 8sin 6