CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0580	23

Abbreviations

cao	correct answer only	
-----	---------------------	--

dep dependent

FT follow through after error

isw ignore subsequent working

oe or equivalent

SC Special Case

nfww not from wrong working

soi seen or implied

Qu.	Part	Answers	Mark	Part Marks
1		- 16	1	
2		84	2	M1 for $\frac{7}{6+8+9+7}$ or $\frac{360}{6+8+9+7}$
3		1030	2	M1 for 1350 ÷ 1.313
4		$5a(3a^2-b)$	2	B1 for $a(15a^2 - 5b)$ or $5(3a^3 - ab)$
5	(a)	0.059161	1	
	(b)	5.9161×10 ⁻²	1FT	ft <i>their</i> part (a)
6		$3x^{\circ}y^{4}$	2	B1 for x^6 or y^4 in a product on answer line
7	(a)	74	1	
	(b)	8.69	1	
8		48	2	M1 for 15^2 or $\left(\frac{1}{15}\right)^2$ or $\frac{1}{15^2}$
				or $\sqrt{10800}$ or $\frac{1}{\sqrt{10800}}$
9		$t < -\frac{6}{7}$	2	M1 for $5t + 2t < 17 - 23$ If zero scored SC1 for $-\frac{6}{7}$ with incorrect
				inequality sign or equals sign

	Page 3		Mark Sche			Syllabus	Paper
			IGCSE – May/J	IGCSE – May/June 2014 0580 23			23
10		15	be $\frac{9}{9}$ and $\frac{7 \times 4}{9 \times 4}$ oe or better oe working must be shown	B1 M1 FT A1	e.g. $\frac{45}{36}$ and Follow throug Alt method 1 M1 for $\frac{1 \times 9}{4 \times 9}$ Alt method 2 M1 for oe e.g	gh <i>their</i> $\frac{5}{4}$ for the N B1 for $\frac{1}{4} + \frac{2}{9}$ and $\frac{2 \times 4}{4 \times 9}$ or e.g. $\frac{1}{2}$ B1 for $\frac{1}{4} - \frac{7}{9} + 1$	11 mark. $\frac{9}{36}$ and $\frac{8}{36}$
11		3.5		3	M1 for $y = k$ A1 for $k = \frac{1}{2}$ Alternative m M2 for $\frac{y}{\sqrt[3]{340}}$		
12	(a) (b)		- 4)(x + 2)	2 1FT		a)(x+b) = 2 or $ab = -8$ C1 for $3\left(x-\frac{4}{3}\right)(x+\frac{4}{3})(x+$	2)
13		<i>y</i> =	-0.5 <i>x</i> +11.5 oe	3	or - 0.5. or B1 for g and B1 f If zero scored SC1 for	$k + 11.5$, $k \neq 0$ oe k + 11.5 oe radient = -0.5 oe for y-intercept = 11.3	5 oe

	Page 4	Mark Scheme			Syllabus	Paper
		IGCSE – May/J	CSE – May/June 2014			23
14		8.23 or 8.234 to 8.235	3		$\frac{12.5 \times \sin 37}{\sin 66}$ $\frac{PR}{137} = \frac{12.5}{\sin 66}$ oe	
15		427.8 427.4	3	2 × or B1 for two 127.35, 86.55 If zero scored	27.35 + 86.55) or (127.35 + 86.45) of these figures: 5, 127.25, 86.45 seen d, SC2 for upper bo 427.4 provided nfw	und 427.8 or
16		65.4 or 65.37 to 65.4	4	or M1 for $\sqrt{3}$	$\frac{5}{12} \text{ or } \frac{\sqrt{3^2 + 4^2}}{12} \text{ of }$ $\frac{3^2 + 4^2}{3^2 + 4^2}$ learly identifying an	
17	(a)	9 1 2 3 7 4 5 6 10	2	B1 for 2 of the	e 4 regions correct	
	(b)	7 8 10	1FT			
	(c)	1	1FT			
18	(a)	$\begin{pmatrix} 33 & 16 \\ 32 & 17 \end{pmatrix}$	2	B1 for one co	olumn or row correc	t
	(b)	$\frac{1}{7} \begin{pmatrix} 3 & -2 \\ -4 & 5 \end{pmatrix}$ oe	2	B1 for $\frac{1}{7} \begin{pmatrix} a \\ c \end{pmatrix}$	$\binom{b}{d}$ seen or $\binom{3}{-4}$	$\binom{-2}{5}$ seen
19		3x + 4y = 10.8 5x + 2y = 14.50	1 1			
		2.6[0] 0.75	3	Al for 2.6 A1 for 0.75 If M0 then	orrectly eliminating or SC1 for correct valuation to find the	substitution

Page 5			Mark Sche	Syllabus Paper	
IGCSE – May/J			IGCSE – May/Ju	une 2014	4 0580 23
20	(a)	34		1	
	(b)	16		2	B1 for 24 or 40 seen
	(c)	30		1	
	(d)	120	,	1	
21		62.3	3 or 62.26 to 62.272	5	M1 for $\frac{2}{3} \times 2\pi \times 6$
					and M2 for $(\frac{2}{3} + \frac{1}{3}) \times 2\pi \times 4$ oe
					or M1 for $\frac{2}{3} \times 2\pi \times 4$ or $\frac{1}{3} \times 2\pi \times 4$
					and M1 for $2 \times (2+4) + k\pi, k \neq 0$
22	(a)	Tria	angle at (2,-1) (2,1) (1,-2)	2	B1 for translation by $\begin{pmatrix} k \\ -4 \end{pmatrix}$ or $\begin{pmatrix} 3 \\ k \end{pmatrix}$
	(b)		ation	1	OR enlargement
		-	ntre] (1, 0) ° or half turn	1 1	[centre] (1,0) [scale factor] -1
	(c)	Tria	angle at (2,3) (4,2) (2,5)	3	B2 for 2 correct vertices plotted
					or If no/wrong plots allow SC2 for 3 correct coordinates shown in working or SC1 for any 2 correct coordinates shown or a triangle of the correct size and orientation but wrong position
					or M1 for $\begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & -2 \\ 3 & 5 & 2 \end{pmatrix}$ oe
					shown