CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/31 Paper 3 (Core), maximum raw mark 104

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0580	31

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

Ωu	estion	Answers	Mark	Part Marks
Qu	estion		Mark	Tait Marks
1	(a) (i)	$\frac{3}{3+4+8}$ or $\frac{180}{3+4+8}$	M1	
		$3 \div (15) \times 180$ or $\frac{180 \times 3}{15}$ (= 36)	M1	
	(ii)	48 [and] 96	1,1	One mark for each. If zero, SC1 for sum of both angles = 144.
	(b) (i)	Angle $BAC = 35 \ (\pm 2^{\circ})$	B1	
		Angle $ABC = 65 \ (\pm 2^{\circ})$ and triangle completed	B 1	If zero SC1 for <i>AC</i> and <i>BC</i> reversed and triangle completed
	(ii)	4.45cm to 4.85cm	1 FT	FT for their shortest side
	(c)	19.6 cao	2	M1 for $0.5 \times 7 \times 5.6$
		cm ² oe	1	
2	(a) (i)	86	1	
	(ii)	55	1	
	(iii)	81	1	
	(iv)	64	1	
	(b) (i)	77	1	
	(ii)	120	2	B1 for any other multiple of 120
	(c)	12 [days] 15 [hours]	1,1	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – Mav/June 2014	0580	31

3	(a) (i)	Parallelogram	1	
		0	1	
	(ii)	O	1	
	(b)	Translation	1	
		$\begin{pmatrix} 9 \\ -6 \end{pmatrix}$	1	Independent Accept 9 right, 6 down
	(c) (i)	(1, 4), (4, 4), (5, 2), (2, 2).	2	SC1 for reflection in <i>x</i> -axis
	(ii)	(-4, -1), (-4, -4), (-2, -5), (-2, -2)	2	SC1 for rotation 90° clockwise or correct rotation any centre
	(d)	(-6,8), (0,8), (-8,4), (-2,4)	2	SC1 for enlargement of S, scale factor 2, wrong position
	(e) (i)	6	2	M1 for 3 × 2
	(ii)	4	1	
	(iii)	24	1FT	FT their(e)(i) × their (e)(ii) Or FT area of their (d) if a parallelogram and not congruent to S.
4	(a) (i)	2, 4, 2, 5, 6, 3, 3	2	B1 for 5 or 6 correct Or 7 correct tallies if frequency column blank Or 7 correct frequencies in tally column
	(ii)	70	1FT	
	(iii)	30	1	
	(iv)	\sum (Frequency, f × mass, w)	M1	7 items attempted and added or sum of 25 masses
		1650 ÷ 25	B1	
	(b)	768	2	M1 for 0.96 × 800 oe

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – Mav/June 2014	0580	31

(c) (i)	49.5 cao	3	M1 for figs 66×750 soi
			M1 for ÷ 1000
(ii)	69.3[0]	1 FT	Their $(c)(i) \times 1.40$
(iii)	110	3	M2 for $\frac{their(c)(ii) - 33}{33} \times 100$
			or M1 for their $(c)(ii) - 33$
			Alternative method M2 for $\frac{their(c)(ii)}{33} \times 100 - 100$
			Or M1 for $\frac{their(c)(ii)}{33}$
(a)	Hexagon correct with arcs. $AF = 7 \text{ cm } (\pm 2\text{mm}) EF = 8 \text{ cm } (\pm 2\text{mm})$	2	B1 for correct hexagon without arcs or one length correct with arcs. Or B1 for two correct arcs
(b)	Hexagon	1	
(c) (i)	Bisector of CD with 2 pairs of arcs	2	B1 for correct bisector with one pair or no arcs
(ii)	Bisector of angle ABC with 2 pairs of correct arcs.	2	B1 for bisector without 2 pairs of arcs
(iii)	Correct enclosed region shaded	1FT	Their enclosed region provided at least 1 mark in each of parts (i) and (ii)
(d) (i)	Semi-circle radius 2.5cm (±2mm) from P and inside polygon	2	SC1 for arc centre P radius 2.5cm Or for arc inside polygon centre P touching boundaries twice or any circle centre P.
(ii)	3930 or 3926 to 3928	2	M1 for $(\pi \times 50^2) \div 2$ oe
(a) (i)	-1, -4, -8, 8, 4, 1.	3	1 for each symmetrical pair
(ii)	8 points correctly plotted, within ½ square.	3FT	B2FT for 6 or 7 correct Or B1 FT for 4 or 5 correct
	2 smooth correct curves, not joined	1	
(iii)	2	1	
()	(a) (b) (c) (i) (ii) (iii) (a) (i) (ii)	(iii) 110 Hexagon correct with arcs. AF = 7 cm (±2mm) EF = 8 cm (±2mm) Hexagon Bisector of CD with 2 pairs of arcs (ii) Bisector of angle ABC with 2 pairs of correct arcs. (iii) Correct enclosed region shaded (d) (i) Semi-circle radius 2.5cm (±2mm) from P and inside polygon (ii) 3930 or 3926 to 3928 (a) (i) -1, -4, -8, 8, 4, 1. (ii) 8 points correctly plotted, within ½ square. 2 smooth correct curves, not joined	(iii) 110 3 Hexagon correct with arcs. $AF = 7 \text{ cm } (\pm 2 \text{mm}) EF = 8 \text{ cm } (\pm 2 \text{mm})$ b) Hexagon 1 (c) (i) Bisector of CD with 2 pairs of arcs 2 (ii) Bisector of angle ABC with 2 pairs of correct arcs. (iii) Correct enclosed region shaded 1FT (d) (i) Semi-circle radius 2.5cm ($\pm 2 \text{mm}$) from P and inside polygon 2 (ii) 3930 or 3926 to 3928 2 (ii) $-1, -4, -8, 8, 4, 1.$ 3 (ii) 8 points correctly plotted, within $\frac{1}{2}$ square. 3FT 2 smooth correct curves, not joined 1

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0580	31

	(b) (i)	-3 0 6	2	B1 for two correct
	(ii)	Correct ruled line	1	
	(c)	1.4 to 1.6 and -3.6 to -3.4	1FT,1FT	FT from their graph ±0.1
	(d)	1.5	1	
7	(a) (i)	[Car angle =] $135 (\pm 2^{\circ})$ $135 \div 360 \times 120$ (= 45)	B1 M1	
	(ii)	$\frac{2}{3}$ or value from 0.658 to 0.675	2	B1 for angles of 238° to 242° or 79 to 81 people
	(b) (i)	x + 31 + x + 17 + 2x [= 120] or better	3	B1 for $x + 17$ – seen together B1 for $2x$
	(ii)	18 cao	3	M1 FT for their $(4x + 48)$ [=120] or their $2x + x + x = 120 - 31 - 17$ or better. M1FT for their $(4x = 72)$ If zero SC2 for a correct numerical solution of their equation of equivalent difficulty.
8	(a)	160c + 400f final answer	2	B1 for 160c or 400f seen
	(b)	2x - 7y final answer www	2	B1 for $2x$ or $-7y$ or $6x - 15y$ or $-4x + 8y$ www
	(c)	5x(xy - 4) final answer	2	B1 for $5(x^2y-4x)$ or $x(5xy-20)$

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – Mav/June 2014	0580	31

	(d)	[x=] 5 [y=] -2	4	M1 for correctly equating one set of coefficients M1 for correct method to eliminate one variable A1 for correct x or y If zero scored SC1 for 2 values satisfying one of the original equations Alternative method M1 for correct rearrangement of one equation $x = (7 - 4y) \div 3 \text{ or } y = (7 - 3x) \div 4$ or $x = (26 + 3y) \div 4 \text{ or } y = (4x - 26) \div 3$ M1 for correct substitution in other equation $4(7 - 4y) \div 3 - 3y = 26$ $4x - 3(7 - 3x) \div 4 = 26$ $3(26 + 3y) \div 4 + 4y = 7$ $3x + 4(4x - 26) \div 3 = 7$ $(7 - 4y) \div 3 = (26 + 3y) \div 4$ $(7 - 3x) \div 4 = (4x - 26) \div 3$ A1 for correct x or y If zero scored SC1 for 2 values satisfying one of the original equations
9	(a) (i)	48, 39	1, 1FT	FT 6th term = 5th term -9
		Subtract 9 oe	1	
	(ii)	162, 486	1, 1FT	FT 6th term = 5th term \times 3
		Multiply by 3 oe	1	
	(b) (i)	93 - 9n oe final answer	2	B1 for $-9n + c$ or $kn + 93$, $k \neq 0$
	(ii)	-96 cao	2	M1 for substitution of $n = 21$ into their linear expression