CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0580	22

Abbreviations

cao corre	ct answer only
-----------	----------------

dep dependent

FT follow through after error

isw ignore subsequent working

oe or equivalent

SC Special Case

nfww not from wrong working

soi seen or implied

Qu.	Answers	Mark	Part Marks
1	$6+5 \times (10-8) = 16$	1	One pair of brackets only
2	20	1	
3	8	1	
4	ξAB	1	
	ξ	1	
5	$v^3 - p$	2	M1 for $v^3 = p + r$
6	95.5 96.5 in correct places cao	2	B1 for 95.5 or 96.5 in correct place or for answers reversed
7 (a)	700	2	M1 for 2800 × 0.325
(b)	0.28	1	
8	$\frac{7}{6}$ oe	B 1	
	their $\frac{7}{6} \times \frac{8}{7}$ oe	M1	Or M1 for $\frac{56}{48} \div \frac{42}{48}$ or equivalent division
	$\frac{4}{3}$ or $1\frac{1}{3}$ cao must see working	A1	with fractions with common denominator

Page	a 3 Mark Sc	cheme		Syllabus	Paper
		Cambridge IGCSE – October/November 2014			22
		I	1		
9	9.13 or 9.127 to 9.1271	3	M2 for $\sqrt[3]{\frac{1000}{440}}$ [1.3 or $\sqrt[3]{\frac{440}{1000}}$ [0.7 Or M1 for $\frac{1000}{440}$ [2 or $\frac{440}{1000}$ [0 or $\sqrt[3]{\frac{figs440}{figs1000}}$	761] oe 2.27] oe	
10	97.2[0]	3	M1 for $C = kr^2$ A1 for $k = 30$ or M2 for $\frac{202.8}{2.6^2} = \frac{c}{1.3}$		
11 (a)	$\begin{pmatrix} 6 & -4 \\ -8 & 38 \end{pmatrix}$	2	M1 for a 2 by 2 ma elements SC1 for $\begin{pmatrix} 16 & -14 \\ -18 & 28 \end{pmatrix}$		correct
(b)	14	1			
12		3	0 1 2 1 SC1 for	2	
13	13.5 or 13.45[]	3	M2 for $\sqrt{\frac{2 \times 85}{\sin 110}}$ or M1 for $\frac{1}{2} \times a^2 \times a^2$ or $\frac{2 \times 85}{\sin 110}$ c		
14 (a)	2.47 or 2.474 to 2.4744	2	M1 for $\frac{56}{360} \times \pi \times 2$.25 ² oe	
(b)	0.742 or 0.7422 to 0.74232	1FT	FT <i>their</i> (a) × 0.3[0] correctly ev	aluated.

Ρ	age	4	Mark Schem			Syllabus	Paper	
			Cambridge IGCSE – Octobe	r/Novem	ber 2014	0580	22	
15	(a)		$2 \times 3 \times 3 \times 5$	2	prime factors	2, 3, [3] and 5 identified as only actors		
					or M1 for partial prime factorisation $6 \times 3 \times 5$ or $2 \times 9 \times 5$ or $3 \times 3 \times 10$ or $2 \times 3 \times 15$			
	(b)		630	2	M1 for $2 \times 3^2 \times 5 \times 7$ oe or for listing multiples of 90 and 105 at least up to 630			
16	(a)		108	1				
			Angle at centre is twice angle at circumference oe	1				
	(b)	(i)	$-\frac{4}{3}$ oe	1				
		(ii)	-1	1				
17			[0.]08	4	M3 for $_{200} \times \left(1 + \frac{2}{100}\right)$	$\left(\frac{1}{2}\right)^2 - 200 - \frac{200}{1}$	$\frac{\times 2 \times 2}{00}$ oe	
					or M1 for $_{200\times (1+)}$	$\left(\frac{2}{100}\right)^2$		
					and M1 for $\frac{200 \times 2}{100}$	$\frac{2 \times 2}{2}$ [+200]		
18	(a)		56	2	B1 for 16 soi or M1 for 72 – <i>their</i>	r 16		
	(b)	(i)	63 or 63 to 63.5	1				
		(ii)	22 or 21.6 to 23 nfww	2	B1 for 49.8 to 50.2 or 71.8 to 72.8	seen		
19	(a)	(i)	c – a	1				
		(ii)	$-\frac{1}{3}$ a + $\frac{1}{3}$ c	3	M2 for $-a + \frac{1}{3}(c + a)$			
					e.g. $-a + c + 2a - \frac{2}{3}$	$-(\mathbf{c}+2\mathbf{a})$		
					Or M1 for a correct	route from A	to X	
	(b)		\overrightarrow{AC} is a multiple of \overrightarrow{AX} and	1	oe			
			they share a common point [A]	1	oe			

F	Page 5	Mark Scheme	е		Syllabus	Paper	
		Cambridge IGCSE – October/November 2014			0580	22	
20	(a) (b)	102 to 106 Correct position of F with correct arcs for angle bisector	2 5	 B1 for 5.1 to 5.3 set B2 for Correct ruled correct arcs or B1 for correct bi and B2 for Arc centre C or B1 for arc centre or correct conversion and B1 for marking possibisector and 8cm fr centre C 	d angle bisect sector with no C, radius 8 cm C with incor on to 8cm ition of F on	o/wrong arcs rect radius <i>their</i>	
21	(a)	$\frac{x+7}{(2x-1)(x+2)}$ Final answer	3		-1(2x-1) seen or better tor $(2x-1)(x+2)$ oe seen swer $\frac{x+5}{(2x-1)(x+2)}$		
	(b)	$\frac{2x}{x+7}$ Final answer	4	M1 for $4x(x-4)$ or factorisation of and M2 for $[2](x + 4)$ or M1 for $[2](x^2 + 3)$ or $[2](x + a)(x + b)$ a + b = 3 SC3 for answer $\frac{1}{2x}$	f numerator (7)(x-4) oe (3x-28) where $ab = -$	28 or	