CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS

0580/42

Paper 4 – Extended, maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case

not from wrong working seen or implied nfww

soi

Qu	•		Answer	Mark	Part marks
1	(a)	(i)	49.5[0]	3	M2 for 16.5[0] ÷ 5 × (5 + 3 + 7) or M1 for 16.5[0] ÷ 5
		(ii)	66	1FT	FT <i>their</i> (a)(i) \div 75 × 100 to 3 sf or better
	(b)		2 hours 39 mins 45 secs	3	B2 for 159.75 oe, e.g. 2.6625 [h] 9585 [s] or M1 for 3 hrs 33 mins oe / (2 + 9 + 1) oe
	(c)		18.75 final answer	3	M2 for 16.5[0] ÷ 0.88 oe or M1 for 16.5[0] associated with 88[%]
2	(a)		x > 0.5 oe final answer nfww	3	B2 nfww for 0.5 with no/incorrect inequality or equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen
	(b)	(i)	(p-2)(q+4) final answer	2	M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$
		(ii)	(3p-5)(3p+5) final answer	1	
	(c) $(5x-9)(x+2)$		M2	M1 partial factorisation, e.g. $x(5x-9)+2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$ or $a + 5b = 1$	
			$\frac{9}{5}$ oe and -2 final answer	B1	

Page 3			Mark Scheme				Paper
			Cambridge IGCSE – October/November 2014			0580	42
				r			
3	(a)		$35 < t \le 40$	1			
	(b)		22.5, 27.5, 32.5, 37.5, 42.5, 47.5	M1	At least 4 correct mid-values soi		
			$(2 \times 22.5 + 6 \times 27.5 + 7 \times 32.5 + 19 \times 37.5 + 9 \times 42.5 + 7 \times 47.5)$	M1	$\sum_{x \to 1} f_x \text{ where } x \text{ is in the correct interval allow one}$ further slip [45 + 165 + 227.5 + 712.5 + 382.5 + 332.5 = 1865]		
			$\div 50$ or their $\sum f$	M1dep	Dependent on second me	ethod	
			37.3	A1	SC2 for correct answer w	ith no worki	ng
	(c)	(i)	15, 19, 16	1			
	((ii)	rectangular bars of height 1, 3.8 and 1.6	B2FT	FT their (c)(i), on correct boundary lines B1FT for 2 correct heights If 0 scored for heights then SC1 for 3 correct frequency densities soi		
			correct widths of 15, 5,10 and no gaps	B1			
4	(a)		Enlargement [SF] $-\frac{1}{2}$ oe [centre] (2, 5)	3	B1 for each		
	(b)	(i)	Image at (-2, 6), (-8, 3), (-4, 3)	2	SC1 for reflection in any or for 3 correct points not	vertical line joined	
	((ii)	Image at (3, -2), (3, 2), (6, 4)	2	SC1 for rotation 90° [antioning or equation of $(-3, 2)$ ($(-3, -2)$) (or for 3 correct points not	clockwise] a -6, -4) joined	around
	(i	iii)	Image at (-5, 1), (-3, -2), (1, -2)	2	SC1 for translation by $\begin{pmatrix} -1 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -5 \end{pmatrix}$ or for 3 correct points not joined		
	(c)	(i)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	2	B1 for a correct row or co	olumn	
	((ii)	Rotation, 90° [anticlockwise] oe origin oe	2	B1 for two elements corre	ect	

Pag	ge 4	Mark Scheme			Syllabus	Paper	
			Cambridge IGCSE – Oct	ober/No	vember 2014	0580	42
5	(a)	(i) (ii)	8	1	M1 for $[g(17) =] \frac{7}{2}$ or 2	$2\left(\frac{7}{2}\right)^{2} + 7$	·(7)
	(b)	()	4 or – 4	3	M1 for $r_{12}(17) = 14$ M2 for $x^2 = 16$ or $x^2 - 16 = 16$ or M1 for $7 = (x - 3)(x + 1)$	= 0 3) or better	$\left(x-3\right)$
	(c)		$2x^2 + 7x - 11 = 0$ soi	B1			
			$\frac{-7\pm\sqrt{(7)^2-4(2)(-11)}}{2(2)}$	B1FT B1FT	FT $2x^2 + 7x \pm \text{their } k \ [k \neq 0] \text{ oe}$ B1FT for $\sqrt{7^2 - 4(2)(-11)}$ or better or $\left(x + \frac{7}{4}\right)^2$ oe If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$, B1FT for -7 and 2(2) or better or		
			-4.68, 1.18 final answers	B1B1	$-\frac{7}{4} + or -\sqrt{\frac{137}{16}}$ oe If B0 , SC1 for answers -4 or -4.676 and 1.176 se or for -4.68 and 1.18 see or for answer 4.68 and -1	4.7 and 1.2 een m .18	
	(d)		$\frac{x+2}{5}$ or $\frac{x}{5} + \frac{2}{5}$	2	M1 for correct first step of or $x = \frac{y+2}{5}$ or $x = 5y-2$ $\frac{y}{5} = x - \frac{2}{5}$	or better, e.g. 2 or $y + 2 = 5$	5y = x + 2 x or
	(e)		-2	1			

Page 5			Mark Sc	Syllabus	Paper			
			Cambridge IGCSE – Oct	tober/No	November 2014 0580 42			
r				1	1			
6	(a)		-3, 7.375, 8.875	1, 1, 1	Accept 7.4 or 7.37 or 7.37 8.87 or 8.88 for 8.875	8 for 7.375 ar	nd 8.9 or	
	(b)		Correct curve	4	 B3FT for 8 or 9 correct plots B2FT for 6 or 7 correct plots B1FT for 4 or 5 correct plots Point must touch line if exact or be in correct square if not exact (including boundaries) 			
	(c)	(i)	Any integer less than 7 or greater than 10	1				
		(ii)	7, 8 or 9	1				
	(d)		y = 15x + 2 ruled and fit for purpose	B2	B1 for short line but correct or freehand full length correct line or for ruled line through $(0, 2)$ (but not $y = 2$) or for ruled line with gradient 15 (acc ±1 mm vertically for 1 horizontal unit)			
			-1.45 to -1.35 and 0.4 to 0.5	B2	B1 for each			
	(e)		Tangent ruled at $x = 1.5$	B1	No daylight at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = 1.4$ and 1.6			
			7 to 12	2	Dep on B1 or close attem M1 for $y - \frac{\text{step}}{x} - \frac{\text{step}}{y}$	pt at tangent or their tange	at $x = 1.5$ nt	
7	(a)	(i)	120 × 55 × 75 [= 495000]	M1				
			÷ 1000 [= 495] or 495[l] × 1000 = 495000[ml]	M1				
	(b)	(i)	11	2	M1 for 495000 ÷ 750 [÷ After 0 scored, SC1 for a	60] oe [660] nswer figs 11		
		(ii)	37.5 or 37.50 to 37.51	3	M2 for $\sqrt{\frac{figs 495}{112\pi}}$ oe			
					or M1 for $[112r^2 =]\frac{figs}{r}$ $[\pi r^2 =]\frac{figs495}{112}$ or better	$\frac{1}{\tau}$ or		

Paç	ge 6	Mark Scheme		Syllabus	Paper		
			Cambridge IGCSE – Oct	ober/No	vember 2014	0580	42
				r	l		
	(c)		15	4	B3 for answer 60 or M3 for $75 - 145^2 - (145^2 - $	$\frac{55^2 + 120^2}{20^2}$ oe	oe
	(d)		24.4[4] to 24.45	3	M2 for $\cos^{-1} (\sqrt{55^2 + 120^2} / 145)$ oe, e.g. or $\sin^{-1} (75 - \text{their (c)}) / 145$ or $\tan^{-1} ((75 - \text{their (c)}) / \sqrt{55^2 + 120^2})$ or M1 for $\cos = \sqrt{55^2 + 120^2} / 145$ oe or $\sin = (75 - \text{their (c)}) / 145$ or $\tan = (75 - \text{their (c)}) / \sqrt{55^2 + 120^2}$		
8	(a)		Angle $LPQ = 32$ soi $58^2 + 74^2 - 2 \times 58 \times$ 74 cos their P	B1 M2	M1 for correct implicit co	os rule	
			39.50[1]	A2	A1 for 1560.3 to 1560.4 c	or 1560	
	(b)		$\sin PQL = \frac{58\sin their P}{39.5} \text{ oe}$	M2	M1 for $\frac{\sin PQL}{58} = \frac{\sin(their P)}{39.5}$ oe		
			51.1 or 51.08 to 51.09	B 1			
	(c) ((i)	322	2	M1 for 180 + 142 oe		
	(i	ii)	[0]13[.1] or 13.08 to 13.09	1FT	FT <i>their</i> (b) – 38		
	(d)		17.8 or 17.77 to 17.78	3	M1 for $74 \div 2.25$ oe soil better M1 for dist or speed $\div 1.8$	by 32.888 85	to 3 sf or
	(e)		30.7 or 30.73 to 30.74	3	M2 for 58 sin <i>their</i> P oe or M1 for $\frac{x}{58} = \sin their$ or $\frac{x}{39.5} = \sin their$ (b)	or 39.5 sin <i>th</i> P oe	heir (b)
9	(a)		28 45 17 21 45 66	1, 1 1 1			
	(b) ((i)	4n - 3 oe	2	M1 for 4 <i>n</i> + <i>k</i>		
	(i	ii)	237	1			
	(ii	ii)	50	2FT	FT <i>their</i> (b)(i) = 200 solv truncated dep on linear ex an + k M1 for <i>their</i> $4n - 3 = 200$	yed and then a pression of a p	answer form - 3 ≤ 200

Pag	ge 7		Mark Scheme			Syllabus	Paper
			Cambridge IGCSE – Oct	tober/No	vember 2014	0580	42
				1	r		
	(c)		p = 2 and $q = -5$ with some correct supporting working leading to the solutions	5	M2 for any 2 of $p + q + 3 = 0$ oe, $2^2 p + 2q + 3 = 1$ oe, $3^2 p + 3q + 3 = 6$ oe, $4^2 p + 4q + 3 = 15$ oe, $5^2 p + 5q + 3 = their$ 28 oe, etc. or M1 for any one of these M1 indep for correctly eliminating p or q from pair of linear equations A1 for one correct value If 0 scored SC1 for 2 values that satisfy one of their original equations After M0, 2 correct answers SC1		
	(d)		$2n^2 - n$ or $n(2n - 1)$	2	B1 for answer $2n^2 + k[n]$ or M1 for <i>their quadratic</i> from (b)(i)	from (c) + <i>t</i> /	heir linear
10	(a)	(i)	$\frac{1}{36}$ final answer	2	M1 for $\frac{1}{6} \times \frac{1}{6}$		
		(ii)	$\frac{1}{12}$ final answer	3	M2 for $3\left(\frac{1}{6} \times \frac{1}{6}\right)$ oe or M1 for identifying 3 co and (5, 5)	orrect pairs (4	4, 6), (6, 4)
	(b)		7	1			
			Refers to most combinations oe	1	Dependent on previous n	nark	
	(c)		$\frac{141}{1296} \text{ oe } \left[\frac{47}{432}\right]$	5	M4 for $\frac{2}{36} + \left(\left[1 - \frac{3}{36} \right] \times \frac{3}{36} \right)$ or M3 for 2 correct probation from those above or M1 for $\left(1 - \frac{3}{36} \right) \times \frac{2}{36}$	$\left(\frac{2}{36}\right) + \left(\frac{1}{36} \times \frac{1}{36}\right)$ bilities show	$\left(\frac{3}{36}\right)$ oe n <u>added</u>
					And M1 for $\frac{1}{36} \times \frac{3}{36}$ seen or $\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}$ oe all probability not of the form	n oe one or added n $\frac{n}{36}$	to a