CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Smaaial Casa

SC Special Case

nfww not from wrong working

soi seen or implied

Qu	uestion	Answer	Mark	Part marks
1	(a)	1848 final answer	2	M1 for $1650 \times \left(1 + \frac{12}{100}\right)$ oe
	(b) (i)	1750	2	M1 for $\frac{500}{9-5}$ [×5] or [×9] or any equation which
				would lead to $4x = 500$ or $4x = 2500$ or $4x = 4500$ or $4x = 7000$ when simplified
	(ii)	$64\frac{2}{7}$ or 64.3 or 64.28 to 64.29	1	
	(c) (i)	33 : 20 oe	2	B1 for 33 : 6 or 20 : 6 or 5.5 oe seen or 3.33oe seen or M1 for two ratios with a common number of children implied by $20k$ and $33k$ seen, $k > 0$
	(ii)	236	3	M2 for $\frac{24}{2} \times 11 + \frac{24}{3} \times 10$ oe
				or $((3 \times 11) + (2 \times 10)) \times 24 \div 6$ or $\frac{6}{6+20+33} \times x = 24$ or M1 for $\frac{24}{2} \times 11$ or $\frac{24}{2} \times 13$ soi
	(d)	17[.00]	3	or $\frac{24}{3} \times 10$ or $\frac{24}{3} \times 13$ soi oe or $24 \div 6$ soi M2 for $20.40 \div \left(1 + \frac{20}{100}\right)$ oe
				or M1 for $(100 + 20)\%$ oe associated with 20.40 seen

Page 3	Mark Sc	heme		Syllabus	Paper
	Cambridge IGCSE	0580	42		
Question	Answer	Answer Mark Part r			
2 (a) (i	66	1			
(ii) 24	1FT	FT 90 – <i>their</i> (a)(i)		
(iii) 66	2FT	FT 90 – <i>their</i> (a)(ii) M1 for [<i>BOD</i> =] 180 – 44 or 180 – 2 × <i>their</i> (a)(ii)	8	
(iv	114	1FT	FT 180 – <i>their</i> (a)(iii)		
(b)	83.6 or 83.60[]	2	M1 for $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 48)$ oe or $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 2 \times their (a)(ii))$ of		
(c)	Opposite angles add up to 180 OR Angle in a semicircle [=90]	1			

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – Mav/June 2015	0580	42

Question	n	Answer	Mark	Part marks
3 (a)	(i)	$\frac{600}{x+20}$ final answer	1	
((ii)	$\frac{600}{x}$ - their $\frac{600}{x+20}$ = 1.5 oe	M1	
		600(x+20) - 600x = 1.5x(x+20) or $\frac{600(x+20) - 600x}{x(x+20)} [= their 1.5]$	M1	Correctly clearing, or correctly collecting into a single fraction, two fractions both with algebraic denominators, one being $\frac{600}{x}$
		$x(x+20)$ $600x + 12000 - 600x = 1.5x^{2} + 30x$ $[0 = 1.5x^{2} + 30x - 12000]$	M1	Dep on previous M1 , correctly multiplying <i>their</i> brackets and clearing fraction
		$0 = x^2 + 20x - 8000$	A1	With no errors or omissions seen, dep on M3
(b)		-100, 80	3	M2 for $(x + 100)(x - 80)$ or M1 for $(x + a)(x + b)$ where $ab = -8000$ or $a + b = 20$
				OR B1 for $\sqrt{20^2 - 4 \times 1 \times (-8000)}$ or better and
				B1 for $\frac{-20 + \sqrt{q}}{2 \times 1}$ or $\frac{-20 - \sqrt{q}}{2 \times 1}$
(c)		6.67 or 6.666 to 6.667 oe	2FT	FT $\frac{12}{2(their \ 80) + 20} \times 100$ correctly evaluated to at least 3 sf M1 for choosing and using <i>their</i> positive root

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	42

			· · ·
Question	Answer	Mark	Part marks
4 (a) (i)	9π final answer	2	M1 for $\frac{135}{360} \times 2 \times \pi \times 12$ oe
(ii)	(a) 4.5[0] or 4.497 to 4.504	2FT	FT their 9 ÷ 2 M1 for $2\pi r = their 9\pi$ or $12\pi r = \frac{135}{360}\pi 12^2$ oe
	(b) 11.1 or 11.12[]	3FT	FT their $\sqrt{12^2 - their 4.5^2}$ to 3 sf or better (<i>their</i> 4.5 < 12)
			M2 for $\sqrt{12^2 - their 4.5^2}$ (their 4.5 < 12) or
(b) (i)	75 nfww	3	M1 for $12^2 = h^2 + their 4.5^2$ oe (their 4.5 < 12) M2 for $l = \frac{35}{7} \times 15$ or $x = \frac{35}{7} \times 8$ oe or for 40 seen nfww
			or correct trig or Pythagoras' method leading to value rounding to 40.0
			M1 for $\frac{l}{15} = \frac{35}{7}$ oe or $\frac{x}{8} = \frac{35}{7}$ oe
			or $\frac{l-35}{8} = \frac{35}{7}$ oe or $\frac{l-35}{l} = \frac{8}{15}$ oe
(ii)	2730 or 2730.0 to 2730.4 nfww	3	M2 dep for $\pi \times 15 \times their 75 - \pi \times 8 \times (their 75 - 35) [+ \pi \times 8^2]$ dep their 75 > 35
			or 805π [2527.7 to 2530] nfww or 869 π [2728.6 to 2731.2] nfww
			or
			M1 for $\pi \times 15 \times their$ 75 or 1125 π [3532.5 to 3535.8] nfww seen
			or $\pi \times 8 \times (their 75 - 35)$ or 320 π [1004.8 to 1005.8] nfww seen
			or $\pi \times 8^2$ or 64π [200.9 to 201.2] nfww seen
(c) (i)	16 <i>r</i> ³	2	M1 for $[M=] k \times r^3$ or $1458=k \times 4.5^3$ oe
			or $\frac{M}{1458} = \frac{r^3}{4.5^3}$ oe
			After M0, SC1 for 16 seen
(ii)	8 : 27 oe	1	Must be numeric, e.g. 128:432

Pa	age 6	Mark Sci	neme		Syllabus	Paper
		Cambridge IGCSE -	- May/Jı	ine 2015	0580	42
5	(a)	2 and 7	2	B1 for each value		
	(b)	Complete correct curve	5	 B3 FT for <i>their</i> 9 or 10 p or B2 FT for <i>their</i> 7 or 8 or B1 FT for <i>their</i> 5 or 6 and B1 independent for one b the <i>y</i>-axis and not touch SC4 for correct curve with 	b points points pranch on eacl pranch y-axis	
	(c)	Correct tangent and $-13 \leq \text{grad} \leq -8$	3	B2 for close attempt at ta answer in range OR B1 for ruled tangent at x no daylight at $x = 1$ Consider point of contact two vertices of daylight, between $x = 0.8$ and 1.2 and M1 (dep on B1 or cl [at any point] for $\frac{rise}{run}$	= 1, t as midpoint the midpoint	between must be
	(d) (i)	5 to 6	1			
	(ii)	2 to 2.35 and -2.55 to -2.35	2FT	FT <i>their k</i> B1FT for each correct so	olution	
	(e)	[a =] -5 [b =] -1 [c =] 12	3	B2 for two correct values or for $x^3 - 5x^2 - x + 12$ [= or M1 for $x^2 - 2x + \frac{12}{x} = 3$.	= 0] oe	

Pa	ge 7	Mark Sch	eme		Syllabus	Paper
		Cambridge IGCSE –	May/Ju	ine 2015	0580	42
6	(a)	$95.5^2 + 83.1^2 - 2 \times 95.5 \times 83.1 \times \cos 101$	M2	M1 for $\cos 101 = \frac{95.5^2}{2 \times 100}$	$+83.1^2 - AB^2$ 95.5×83.1	
		138.0	A2	A1 for 19054.[] also in	mplies M2	
	(b)	110 or 109.7 to 109.8	4	B3 for 36.2 or 36.20 to 3	6.24[1]	
				or M2 for [sin =] $\frac{83.1 \times 138}{138}$	sin101 [.0] oe	
				or M1 for correct implicit	it version	
				After M0, SC1 for angle	ABC = 42.76	to 42.8
	(c)	18.8 or 18.79[]	2	M1 for 46.2 × cos(45 + 2 After M0, SC1 for answe 42.21		20 to
7	(a) (i)	316	4	M1 for 100, 250, 325, 37	75, 450 soi	
				M1 for Σfm with <i>m</i> 's in i boundaries [15800]	intervals inclu	ding
				M1 (dep on 2nd M1) for	their $\Sigma fm \div 5$	0
	(ii)	Three correct blocks with heights	3	B2 for two correct blocks	S	
		0.09, 0.36, 0.24 with correct widths and no gaps		or B1 for one correct block frequency densities soi	or three corre	ct
	(b)	Students have a greater range of estimates oe	B 1			
		[On average] adults estimated a greater mass oe	B 1			

Page 8	Mark Scl	heme		Syllabus	Paper
	Cambridge IGCSE -	- May/Ju	ine 2015	0580	42
[
8 (a) (i)	$x \ge 100$ final answer	1			
(ii)	$y \ge 120$ final answer	1			
(iii)	$x + y \le 300$ final answer	1			
(iv)	$40x + 80y \ge 16000$ or $0.4x + 0.8y \ge 160$	M1	with no errors seen but isw substitution of values after correct inequality		n of
(b)	x = 100 ruled	B1			
	y = 120 ruled	B1			
	x + y = 300 ruled	B1			
	x + 2y = 400 ruled	B2	Allow B1 for line with ne passing through (400, 0) extended		
	Correct shading	B1	Dep on all previous mark Condone any clear indica region		quired
(c)	200	2	M1 for $x = 100$ and $y = 2$ or for $x \times 0.4 + y \times 0.8$ or is an integer point in <i>their</i>	e evaluated w	

Pa	age 9	Mark Scl	neme		Syllabus	Paper
	Ŭ	Cambridge IGCSE -	- May/Jı	une 2015	0580	42
9	(a)	$4x - 3x^2$ or $x(4 - 3x)$ nfww final answer	3	B2 for $3x^2 - 6x - 6x^2 + 1$ or M1 for $3x^2 - 6x$ or -6		
	(b) (i)	(2+y)(3w-2x) oe final answer	2	M1 for $3w(2 + y) - 2x(2)$ or $2(3w - 2x) + y(3w - 2)$		
	(ii)	(2x+5y)(2x-5y) final answer	2	M1 for $(2x \pm 5y)(2x \pm 5y)$ or $(kx + 5y)(kx - 5y), k \neq$ or $(2 + 5y)(2 - 5y)$		
	(c)	$\frac{27x^6}{64}$ final answer	2	B1 for 2 [out of 3] element form in final answer or final answer contains 2 or $\frac{3x^2}{4}$ seen or $\frac{729x^{12}}{4096}$ s	27 and 64 and	-
				or $\frac{1}{4}$ seen or $\frac{1}{4096}$ s	een	
	(d) (i) $2n$ is even and subtracting 1 g an odd number		1	Must interpret the $2n$ as a then the -1 oe	even or not oc	ld and
	(ii)	2n + 1 oe final answer	1			
	(iii)	<i>their</i> $(2n + 1)^2 - (2n - 1)^2$	M1	Could use alternate correct consecutive odd number accuracy marks if correct Could reverse the algebra <i>their</i> $(2n-1)^2 - (2n+1)^2$ Allow method and accurate	s. Allow meth t. aic terms f leading to –8	nod and E <i>n</i> .
		$4n^2 + 4n + 1 - 4n^2 + 4n - 1$	M1	Dep on M1 for expandim expressions. If seen alone and comple implies previous M1 Allow $4n^2 + 4n + 1 - (4n)$	etely correct th	
		8 <i>n</i>	A1	With no errors seen. After 0 scored, allow SC evaluated numeric examp consecutive odd squares	ples of subtra	•

Page 1	10	Mark Scheme Syllabus Par					
		Cambridge IGCSE – May/June 2015				42	
10 (a) (i)	9.43[]	M1 for $5^2 + ([-]8)^2$ or better				
	(ii)	(-3, 5)	1				
(b) (i)	(a) $\frac{1}{2}(\mathbf{a} + \mathbf{b})$ or $\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$	2	M1 for $\mathbf{a} + \frac{1}{2}AB$ oe, e.g $\mathbf{a} + AM$, $OA + \frac{1}{2}AB$			
		(a) $\frac{1}{2}(\mathbf{a} + \mathbf{b})$ or $\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$ (b) $\frac{1}{4}(\mathbf{a} + \mathbf{b})$ or $\frac{1}{4}\mathbf{a} + \frac{1}{4}\mathbf{b}$	1FT	FT $\frac{1}{2}$ <i>their</i> (b)(i)(a) <u>in terms of a and/or b</u> in simplest form			
		(c) $\frac{1}{4}$ (b - 3a) or $\frac{1}{4}$ b - $\frac{3}{4}$ a	2	M1 for $-\mathbf{a} + their (\mathbf{b})(\mathbf{i})(\mathbf{b})$) or any corr	ect route	
	(ii)	3 : 4 final answer	3	M1 for $[AN =] -a + \frac{1}{3}b$			
(c)) (i)	Triangle drawn at $(-3, -3), (-6, -3), (-6, -4\frac{1}{2})$	3	A1 for $\frac{1}{4}$: $\frac{1}{3}$ oe or $AN = \frac{1}{3}(-3\mathbf{a} + \mathbf{b})$ or $3k$ to $4k$ After 0 scored SC1 for final answer $4: 3$ B2 for 2 vertices correct in triangle or 3 correct co-ordinates soi in working or B1 for 1 vertex in triangle correct soi or triangle of correct size and orientation but wrong position or M1 for correct set up e.g.			
	(ii)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} -1.5 & 0 \\ 0 & -1.5 \end{pmatrix} \begin{pmatrix} 2 & 4 & 4 \\ 2 & 2 & 3 \end{pmatrix}$ SC1 for 1 correct row or column or for $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$			

Page 11	Mark Scheme			Syllabus	Paper						
	Cambridge IGCSE – May/June 2015			0580	42						
11 (a)	$\frac{38}{56}$ or $\frac{19}{28}$ oe	4	[0.679 or 0.6785 to 0.678 M3 for $\frac{4}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{7}$ or M2 for sum of two of the $\frac{4}{8} \times \frac{4}{7}, \frac{3}{8} \times \frac{5}{7}$ or M1 for $\frac{4}{8} \times \frac{4}{7}$ or $\frac{3}{8} \times \frac{5}{7}$ or $\frac{1}{8} \times \frac{7}{7}$ isw	+ $\frac{1}{8} [\times \frac{7}{7}]$ oe products isw , $\frac{1}{8} [\times \frac{7}{7}]$ oe							
(b)	$\frac{60}{336}$ or $\frac{5}{28}$ oe	2	After 0 scored, SC1 for an M1 for $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$ or $\left(\frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}\right) + 3\left(\frac{4}{8} \times \frac{1}{7}\right)$		oe						