

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42 October/November 2016

Paper 4 Paper 4 (Extended) MARK SCHEME Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	42

Abbreviations

correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
Special Case
not from wrong working

soi seen or implied

Question	Answer	Mark	Part marks
1 (a) (i)	11054.25 final answer	2	M1 for $18000 \times \left(1 - \frac{15}{100}\right)^3$ oe
(ii)	16 500	3	M2 for $14025 \div \left(1 - \frac{15}{100}\right)$ oe or M1 for recognition of 14.025 as 85% soi
(b)	260 final answer	2	M1 for $P(1+\frac{5}{2})^2 = 286.65$ oe
		_	
(c) (i)	6.18	3	M2 for $\frac{224.72 - 200}{200 \times 2} \times 100$ oe
			or $\frac{1}{2} \left(\frac{224.72}{200} \times 100 - 100 \right)$
			or M1 for $\frac{200 \times r \times 2}{100}$ or $\frac{224.72 - 200}{200 \times 2}$ or
			$\frac{224.72}{200}$ ×100 – 100 soi by 12.36
			If zero scored, SC1 for 56.18 or 56.2 as final answer
(ii)	6	3	M2 for $\sqrt{\frac{224.72}{200}}$ or $\sqrt{\frac{224.72}{2}}$ soi by 1.06 or
			106 or 10.6
			or M1 for $200\left(1+\frac{r}{100}\right)^2 = 224.72$ oe

Ρ	age 3		Mark Scheme			Syllabus	Paper
			Cambridge IGCSE – Oct	ober/No	vember 2016	0580	42
	Questi	on	Answer	Mark	Part m	arks	
2	(a)		1 1	1 1			
	(b)		Fully correct graph	4	B3FT for 6 or 7 points plo or B2FT for 4 or 5 points or B1FT for 2 or 3 points	otted plotted plotted	
	(c) (i	i)	-1 < ans < -0.8 1.25 < ans < 1.45 2.5 < ans < 2.6	1 1 1			
	(ii	i)	-0.7 < ans < -0.5	2	M1 for evidence of $y = -x$	$x \text{ or } \frac{x^3}{3} - x^2$	+1 = -x
	(d) (i	i)	y = 1 to 1.1 oe	1FT	FT only if a clear maximu	um point	
			y = -0.4 to -0.33 oe	1FT	FT only if a clear minimu	ım point	
	(ii	i)	-0.4 to -0.33 oe	1FT	Correct or FT <i>their</i> graph		
3	(a)		$\frac{240\sin 85}{\sin 50}$	M2	or M1 for $\frac{\sin 50}{240} = \frac{\sin 85}{AB}$	oe	
			312 or 312.1	B 1			
	(b)		$\frac{1}{2} \times 180 \times 240 \times \sin A = 12000$	M1			
			33.748 to 33.749	A2	A1 for $\sin = \frac{24000}{43200}$ or be or 0.5 or 0.5555 to 0.555	etter or 0.555 56	or 0.556
	(c)		328 or 328.3 to 328.5	5	B1 for [angle $A =$] 78.75 s	seen	
					M2 for $180^2 + (their AB)^2 - 2 \times 18$ or M1 for cos78.75 = $\frac{180}{2}$ A1 for 107 800 to 107 900	$80 \times their AB$ $\frac{2}{2} + (theirAB)$ $\times 180 \times (their)$	$\frac{x \cos 78.75}{(AB)}$
	(d) (i	i)	108.75 or 108.7 or 108.8	1			
	(ii	i)	288.75 or 288.7 or 288.8	2FT	FT 180 + <i>their</i> (d)(i) M1 for 180 + <i>their</i> (d)(i) or 360 - (180 - <i>their</i> (d)(i))		

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	42

	Question		Answer	Mark	Part marks
4	(a)		15	2	M1 for $10 \div 40$ [× 60]
•	(b)		49.2 nfww	4	M1 for 35, 42.5, 47.5, 52.5, 57.5, 70 soi
					M1 for Σfx 8 × 35 + 22 × 42.5 + 95 × 47.5 + 55 × 52.5 + 14 × 57.5 + 6 × 70
					M1 dep for <i>their</i> $\Sigma fx \div 200$
(c)			Fully correct histogram	4	B3 for 4 correct blocks or B2 for 2 or 3 correct blocks or B1 for 1 correct block
			If zero scored, SC1 for correct frequency densities 0.8, 19, 11, 2.8, 0.3 soi		
(d) (i)			125, 180	1	
(ii)			Correct diagram	3	 B1FT <i>their</i> (d)(i) for 6 correct heights within correct square(including boundaries) or touching correct line if should be on a grid line and B1 for 6 points at upper ends of intervals on correct vertical line and B1FT (dep on at least B1) for increasing curve or polygon through 6 points If zero scored, SC1FT for 5 correct points plotted
	(iii)	(a)	48 to 49	1	
	()	(h)	55	1	
		(c)	8 to 14	2FT	B1FT for 186 to 192 seen

Page 5	5 Mark Scheme				Paper	
	Cambridge IGCSE – October/November 2016					
Question	Answer	Mark	Part n	narks		
5 (a) (i)	$\frac{\frac{3}{4}}{\frac{7}{8}}, \frac{1}{\frac{1}{8}}$	2	B1 for any 2 correct			
(ii)	$\frac{21}{32}$ oe	2	M1 for $\frac{7}{8} \times \frac{3}{4}$ oe			
(iii)	$\frac{441}{1024}$ oe	2FT	M1 for $\left(\frac{7}{8} \times \frac{3}{4}\right)^2$ or <i>their</i>	((a)(ii)) ² oe		
(b)	175	2	M1 for $200 \times \frac{7}{8}$			
(c)	2400	2	M1 for 1575 ÷ <i>their</i> (a)(ii)		

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	42

	Question	Answer	Mark	Part marks		
6	(a) (i)	1.32	2	M1 for $0.8 \times 1.5 \times 1.1$		
	(ii)	0.725 or 0.7246 to 0.7247	2	M1 for $\pi r^2 \times 0.8 = their(a)(i)$ or $\pi r^2 = 1.5 \times 1.1$ oe		
	(iii)	0.513 to 0.518 nfww	5	M1 for $2(1.5 \times 1.1 + 1.5 \times 0.8 + 1.1 \times 0.8)$		
				M1 for $[2 \times] \pi \times (their (a)(ii))^2$		
				M2 for $\pi \times 2 \times (their (a)(ii)) \times 0.8$ or M1 for $\pi \times 2 \times (their (a)(ii))$		
	(b) (i)	$\begin{array}{l} x + y \ge 9 \text{ oe} \\ y \ge 2 \text{ oe} \end{array}$	1 1	If zero scored, SC1 for $x + y > 9$ and $y > 2$		
(ii) Fully correct of unwanted reg		Fully correct diagram with unwanted region shaded	4	B1 for $2x + 3y = 24$ ruled		
				B1 for $x + y = 9$ ruled		
				B1 for $y = 2$ ruled		
	(iii)	20 [$x = $] 7 [$y =$] 2	1 1 1	If zero scored, SC1 for $2x + 3y$ evaluated from integers		

Page 7	Mark Scheme				Paper
	Cambridge IGCSE – Oc	tober/Nov	ember 2016	0580	42
7 (a)	(a) 54.50 final answer 2 B1 for 54.495 to 54.496 or or M1 for 200 ÷ 3.67		or 54.5		
(b) (i)	$\frac{1000}{x(x+1)}$ final answer	3	M1 for 1000 $(x + 1) - 1$ M1 for denominator $x(x)$	000x + 1)	
(ii)	$\frac{1000}{x} - \frac{1000}{x+1} = 4.5[0] \text{ oe}$	M1	Allow <i>their</i> (b)(i) for find fraction	rst M1 only f	or a single
	or $\frac{1000}{x(x+1)} = 4.5$ 1000 = 4.5x (x + 1) $4.5x^2 + 4.5x - 1000 = 0$ $9x^2 + 9x - 2000 = 0$	M1dep A1	Correctly multiplying by algebraic denominator Equation reached without any errors or omissions and at least one step after clearing		or clearing
(iii)	$\frac{-9\pm\sqrt{9^2-4(9)(-2000)}}{2(9)}$	2	the denominators of the brackets included B1 for $\sqrt{9^2 - 4(9)(-200)}$	$\overline{0}$	l with
	- 15.42 14.42	B1 B1	If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p}{r}$ B1 for $p = -9$ and $r = 2$ SC1 for answers -15.4 or -15.42 to $-15and 14.4 or 14.41 to 14or for -14.42 and 15.42or -15.42 and 14.42 se$	$\frac{\sqrt{-\sqrt{4}}}{r}$ then (9) 5.41 .42 2 en but not fir	nal answer
			Answers without work or SC1	ting only sco	re B1, B1
(iv)	69.34 to 69.37 final answer must be 2 dp	2FT	FT 1000 \div <i>their</i> positive rounded up or down to 2 or M1 for 1000 \div <i>their</i>]	e x with final 2 dp positive x	answer

Cambridge IGCSE - October/November 2016 0580 42 8 (a) $\begin{bmatrix} \mu = 1 \\ \nu = 1 \end{bmatrix} 160$ 1 1 (b) 6.24 or 6.244 to 6.245 3 M2 for $\sqrt{k^3 - 5^3}$ oe or B1 for suitable right angled triangle drawn with 5 on correct side or B1 for $1^2 + 5^3 = 8^3$ oe or B1 for suitable right angled triangle drawn with 5 on correct side (c) 5.05 or 5.052 2 M1 for $\frac{4.8}{2.5} = \frac{9.7}{MN}$ oe or M2 for $[x](x+1) - 4x\frac{5}{12}[x^n](x-1)$ oe, $n = 1, 2$ or 3 (d) 4 nfww 4 M3 for $[x^n](x+1) - 4x\frac{5}{12}[x^n](x-1)$ oe, $n = 1, 2$ or 3 or M2 for $[x](x+1) = (\frac{2}{12}]^2$ oe or M1 for 2^2 or $(\frac{1}{2})^2$ soi 9 (a) (i) 1.5 oe 1 (ii) $\frac{3}{y-2}$ oc final answer 3 M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $ay + b, a$ and $b \neq 0$ (b) (i) -3 1 (ii) 65536 final answer 2 B1 for h(16) oe e. h(2^4) (iii) -6 2 M1 for $3x + x + 3x + x = 60$ oc (b) 5 3 1 10 (a) 7.5 2 M1 for $3x + x + 3x + x = 60$ oc <t< th=""><th>Ρ</th><th>age 8</th><th colspan="3">Mark Scheme</th><th>Syllabus</th><th>Paper</th></t<>	Ρ	age 8	Mark Scheme			Syllabus	Paper
8 (a) $\begin{bmatrix} u = 1 \\ 0 \\ v = 1 \end{bmatrix} = 160$ 1 (b) 6.24 or 6.244 to 6.245 3 M2 for $\sqrt{8^2 - 5^2}$ oe or M1 for $l^2 + 5^2 = 8^2$ oe or B1 for suitable right angled triangle drawn with 5 on correct side (c) 5.05 or 5.052 2 M1 for $\frac{4.8}{2.5} = \frac{9.7}{MN}$ oe (d) 4 nfww 4 M3 for $[x^a](x+1) = 4 \times \frac{s}{12}[x^a](x-1)$ oe, $n = 1, 2$ or 3 (d) 4 nfww 4 M3 for $[x^a](x+1) = 4 \times \frac{s}{12}[x^a](x-1)$ oe, $n = 1, 2$ or 3 9 (a) (i) 1.5 oe 1 (ii) $\frac{3}{y-2}$ oe final answer 3 M1 for correct removal of fraction M1 for collection of terms in x and factorises OR (iii) $\frac{3}{y-2}$ oe final answer 3 M1 for correct division by expression of the form $y + b, a$ and $b \neq 0$ (b) (i) -3 1 1 (iii) 65 536 final answer 2 B1 for h(16) oe e.g. h(2^4) (iiii) -6 2 M1 for $2.x = 2^3$ oe (iv) 3 1 1 (iii) -6 2 M1 for $3.x + x + 3.x + x = 60$ oc (b) 5 3 B2 for $3.x + 4.x + 5.7 = 60$ or better or M1 for $(3.x^2 + (4.x)^2)$ oe </th <th></th> <th></th> <th>Cambridge IGCSE – Oct</th> <th>tober/No</th> <th>vember 2016</th> <th>0580</th> <th>42</th>			Cambridge IGCSE – Oct	tober/No	vember 2016	0580	42
(b) 6.24 or 6.244 to 6.245 3 M2 for $\sqrt{8^2 - 5^2}$ ac or M1 for $l^2 + 5^2 = 8^2$ oe or B1 for suitable right angled triangle drawn with 5 on correct side (c) 5.05 or 5.052 2 M1 for $\frac{4.8}{2.5} = \frac{9.7}{MN}$ oe (d) 4 nfvw 4 M3 for $[x^n](x+1) = 4 \times \frac{5}{12}[x^n](x-1)$ oe, $n = 1, 2$ or 3 (d) 4 nfvw 4 M3 for $[x^n](x+1) = 4 \times \frac{5}{12}[x^n](x-1)$ oe, $n = 1, 2$ or 3 9 (a) (i) 1.5 oe 1 (ii) $\frac{3}{y-2}$ oe final answer 3 M1 for correct removal of fraction M1 for collection of terms in x and factorises OR R (iii) $\frac{3}{y-2}$ oe final answer 3 M1 for correct division by expression of the form $ay + b, a$ and $b \neq 0$ (b) (i) -3 1 1 (ii) 65536 final answer 2 B1 for h(16) oe e.g. h(2^4) (iii) 65536 final answer 2 B1 for h(16) oe e.g. h(2^4) (iii) -5 2 M1 for $3x + x + 3x + x = 60$ oe (b) (i) -5 2 M1 for $3x^2 + 4x + 5x = 60$ or (b) 5 3 B2 for $3x + 4x + 5x = 60$ or 0 (b) 5 3	8	(a)	[u =] 80 [v =] 160	1			
(b) 6.24 or 6.244 to 6.245 3 M2 for $\sqrt{8^2} - 5^2$ oe or M1 for $l^2 + 5^2 - 8^2$ oe or M1 for $l^2 + 5^2 - 8^2$ oe or M1 for suitable tripted angled triangle drawn with 5 on correct side (c) 5.05 or 5.052 2 M1 for $\frac{4.8}{2.5} = \frac{9.7}{MN}$ oe (d) 4 nfww 4 M3 for $[x^n](x+1) = 4 \times \frac{5}{12} [x^n](x-1)$ oe, $n = 1, 2$ or 3 or M2 for $\frac{[x](x+1)}{\frac{5}{2}[x](x-1)} = \left(\frac{2[x]}{[x]}\right)^2$ oe or M1 for 2^2 or $\left(\frac{1}{2}\right)^2$ soi 9 (a) (i) 1.5 oe 1 (ii) $\frac{3}{y-2}$ oe final answer 3 M1 for correct removal of fraction M1 for correct removal of fraction and M1 for correct removal of thetories or RM1 subtracts 2 from both sides M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $ay + b, a$ and $b \neq 0$ (b) (i) -3 1 (ii) 65536 final answer 2 B1 for h(16) oe e.g. h(2^4) (iii) -6 2 M1 for $3x + x + 3x + x = 60$ oe (b) 5 3 B2 for $3x + 4x + 5x = 60$ or (b) 5 3 B2 for $3x + 4x + 5x = 60$ or (c) 16.8 or 16.80 3 M2 for $x + x + \frac{90}{360} x \pi x 2 \times x = 60$ oe				1			
(c) 5.05 or 5.052 2 M1 for $f^4.5^2 = 8^2$ oc or BI for sutuble right angled triangle drawn with 5 on correct side (d) 4 nfww 2 M1 for $\frac{4.8}{2.5} = \frac{9.7}{MN}$ oc (d) 4 nfww 4 M3 for $[x^n](x+1) = 4 \times \frac{1}{12} [x^n](x-1)$ oe, $n = 1, 2$ or 3 or M2 for $[x^n](x+1) = 4 \times \frac{1}{12} [x^n](x-1)$ oe, $n = 1, 2$ or 3 or M2 for $[\frac{1}{2}]^2$ soi 9 (a) (i) 1.5 oe 1 (ii) $\frac{3}{y-2}$ oe final answer 3 M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $ay + b, a$ and $b \neq 0$ (b) (i) -3 1 (ii) 65 536 final answer 2 B1 for h(16) oe e.g. h(2^4) (iii) -6 2 M1 for $3x + x + 3x + x = 60$ oe (b) 5 3 B2 for $3x + 4x + 5x = 60$ or (b) 5 3 B2 for $3x + 4x + 5x = 60$ or (c) 16.8 or 16.80 3 M2 for $x + x + \frac{90}{360} x \pi x 2 \times x $ [= 60] or or M1 for $\frac{90}{210} x \pi x 2 \times x$ oe		(b)	6.24 or 6.244 to 6.245	3	M2 for $\sqrt{8^2 - 5^2}$ oe		
(e)5.05 or 5.0522M1 for $\frac{4.8}{2.5} = \frac{9.7}{MN}$ oe(d)4 nfww4M3 for $[x^a](x+1) = 4 \times \frac{4}{12}[x^a](x-1)$ oe, $n = 1, 2$ or 3(d)4 nfww4M3 for $[x^a](x+1) = 4 \times \frac{4}{12}[x^a](x-1)$ oe, $n = 1, 2$ or 3(d)4 nfww4M3 for $[x^a](x+1) = 4 \times \frac{4}{12}[x^a](x-1)$ oe, $n = 1, 2$ or 3(e)(f)1.5 oe1(f) $\frac{3}{y-2}$ oe final answer3M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $ay + b, a$ and $b \neq 0$ (b)(f) -3 1(fi) 65536 final answer2B1 for h(16) oe e.g. h(2^4)(fii) -6 2M1 for $2 - x = 2^3$ oe(fiii) -5 1(fiii) 7.5 2M1 for $3x + x + 3x + x = 60$ oc(b) 5 3 B2 for $3x + 4x + 5x [= 60]$ or better or M1 for $(3x)^2 + (4x)^2$ oe(c)16.8 or 16.80 3 M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe					or M1 for $l^2 + 5^2 = 8^2$ oe or B1 for suitable right an with 5 on correct side	gled triangle	drawn
(d)4 nfww4M3 for $[x^n](x+1) = 4 \times \frac{1}{12} [x^n](x-1)$ oe, $n = 1, 2$ or 3(d)4 nfww4M3 for $[x^n](x+1) = 4 \times \frac{1}{12} [x^n](x-1)$ oe, $n = 1, 2$ or 3or M2 for $\frac{[x](x+1)}{\frac{1}{12} [x](x-1)} = \left(\frac{2[x]}{[x]}\right)^2$ oe or M1 for 2^2 or $\left(\frac{1}{2}\right)^2$ soi9(a)(i)1.5 oe11(ii) $\frac{3}{y-2}$ oe final answer33M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides M1 subtracts 2 from both sides M1 multiplies by x to remove fraction and 		(c)	5.05 or 5.052	2	M1 for $\frac{4.8}{2.5} = \frac{9.7}{MN}$ oe		
or M2 for $\frac{[x](x+1)}{\frac{5}{2}[x](x-1)} = \left(\frac{2[x]}{[x]}\right)^2$ oe or M1 for 2^2 or $\left(\frac{1}{2}\right)^2$ soi9 (a) (i)1.5 oe1(ii) $\frac{3}{y-2}$ oe final answer3M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $ay + b$, a and $b \neq 0$ (b) (i) -3 1(ii) 65536 final answer2B1 for h(16) oe e.g. h(2^4)(iii) -6 2M1 for $2-x=2^3$ oe(iv)3110 (a)7.52M1 for $3x + x + 3x + x = 60$ oe(b)53B2 for $3x + 4x + 5x$ [= 60] or better or M1 for $(3x)^2 + (4x)^2$ oe(c)16.8 or 16.803M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe		(d)	4 nfww	4	M3 for $[x^n](x+1) = 4 \times \frac{5}{12}$ or 3	$[x^n](x-1)$ or	e, <i>n</i> = 1, 2
9 (a) (i)1.5 oe1(ii) $\frac{3}{y-2}$ oe final answer3M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides 					or M2 for $\frac{[x](x+1)}{\frac{5}{12}[x](x-1)} = \left($	$\left(\frac{2[x]}{[x]}\right)^2$ oe	
9 (a) (i)1.5 oe1(ii) $\frac{3}{y-2}$ oe final answer3MI for correct removal of fraction MI for collection of terms in x and factorises OR MI subtracts 2 from both sides MI multiplies by x to remove fraction and MI for correct division by expression of the form $ay + b$, a and $b \neq 0$ (b) (i) -3 1(ii) 65536 final answer2(iii) 65536 final answer2(iii) -6 2(iii) -6 2(iii) 7.5 2(iv)3110 (a) 7.5 2(b)53(c) $16.8 \text{ or } 16.80$ 3W1 for $2 + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or MI for $\frac{90}{260} \times \pi \times 2 \times x$ oe					or M1 for 2^2 or $\left(\frac{1}{2}\right)^2$ soi		
(ii) $\frac{3}{y-2}$ oe final answer (ii) $\frac{3}{y-2}$ oe final answer 3 MI for correct removal of fraction MI for collection of terms in x and factorises OR MI subtracts 2 from both sides MI multiplies by x to remove fraction and MI for correct division by expression of the form $ay + b$, a and $b \neq 0$ (b) (i) -3 (ii) 65 536 final answer 2 B1 for h(16) oe e.g. h(2 ⁴) (iii) -6 2 MI for $2 - x = 2^3$ oe (iv) 3 1 10 (a) 7.5 2 MI for $3x + x + 3x + x = 60$ oe 3 B2 for $3x + 4x + 5x [= 60]$ or better or MI for $(3x)^2 + (4x)^2$ oe (c) 16.8 or 16.80 3 M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x [= 60]$ oe or MI for $\frac{90}{360} \times \pi \times 2 \times x$ oe	9	(a) (i) 1.5 oe	1			
(b) (i)-31(ii)65 536 final answer2B1 for h(16) oe e.g. h(2 ⁴)(iii)-62M1 for $2 - x = 2^3$ oe(iv)3110 (a)7.52M1 for $3x + x + 3x + x = 60$ oe(b)53B2 for $3x + 4x + 5x$ [= 60] or better or M1 for $(3x)^2 + (4x)^2$ oe(c)16.8 or 16.803M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe		(ii) $\frac{3}{y-2}$ oe final answer	3	M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $ay \pm b$, a and $b \pm 0$		
(ii)65 536 final answer2B1 for h(16) oe e.g. h(2 ⁴)(iii)-62M1 for $2 - x = 2^3$ oe(iv)3110 (a)7.52M1 for $3x + x + 3x + x = 60$ oe(b)53B2 for $3x + 4x + 5x$ [= 60] or better or M1 for $(3x)^2 + (4x)^2$ oe(c)16.8 or 16.803M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe		(b) (i) –3	1			
(iii)-62M1 for $2 - x = 2^3$ oe(iv)3110 (a)7.52M1 for $3x + x + 3x + x = 60$ oe(b)53B2 for $3x + 4x + 5x$ [= 60] or better or M1 for $(3x)^2 + (4x)^2$ oe(c)16.8 or 16.803M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe		(ii) 65 536 final answer	2	B1 for h(16) oe e.g. h(2^4)	
(iv)3110 (a)7.52M1 for $3x + x + 3x + x = 60$ oe(b)53B2 for $3x + 4x + 5x$ [= 60] or better or M1 for $(3x)^2 + (4x)^2$ oe(c)16.8 or 16.803M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe		(iii) –6	2	M1 for $2 - x = 2^3$ oe		
10 (a) 7.5 2 M1 for $3x + x + 3x + x = 60$ oe (b) 5 3 B2 for $3x + 4x + 5x$ [= 60] or better or M1 for $(3x)^2 + (4x)^2$ oe (c) 16.8 or 16.80 3 M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe		(iv) 3	1			
(b) 5 3 B2 for $3x + 4x + 5x [= 60]$ or better or M1 for $(3x)^2 + (4x)^2$ oe 16.8 or 16.80 3 M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x [= 60]$ oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe	10	(a)	7.5	2	M1 for $3x + x + 3x + x = 0$	60 oe	
(c) 16.8 or 16.80 3 M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{260} \times \pi \times 2 \times x$ oe		(b)	5	3	B2 for $3x + 4x + 5x$ [= 60] or better or M1 for $(3x)^2 + (4x)^2$ oe		
3011		(c)	16.8 or 16.80	3	M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe or M1 for $\frac{90}{360} \times \pi \times 2 \times x$ oe		