

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/21 May/June 2017

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
1	x^{10}	1	
2	2	1	
3(a)	23.46 cao	1	
3(b)	20 cao	1	
4(a)	Chicago	1	
4(b)	-3	1	
5	4n(3n - m) final answer	2	B1 for $4(3n^2 - mn)$ or $n(12n - 4m)$ or $2n(6n - 2m)$ or $2(6n^2 - 2mn)$
6(a)	-4	1	
6(b)	$\frac{1}{5}$ or 0.2	1	
7	$\frac{14(\text{or } 35)}{21} + \frac{15}{21}$	M1	$\operatorname{accept} \frac{14k(\operatorname{or} 35k)}{21k} + \frac{15k}{21k}$
	$2\frac{8}{21}$ cao	A2	or A1 for $\frac{50}{21}$ or $1\frac{8}{21}$ or $\frac{29}{21}$ or $1\frac{29}{21}$
8	$ \begin{array}{r} rt \\ (1-t) r \\ (1-r)t \text{ oe} \\ (1-r)(1-t) \text{ oe} \\ \end{array} $	3	B1 for each
9	7.65	3	M1 for $h = k\sqrt{p}$ oe
			M1 for $h = their k \sqrt{p}$
			or M2 for $\frac{5.4}{\sqrt{1.44}} = \frac{h}{\sqrt{2.89}}$ oe

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Mark	Part marks
10	Correct region identified	3	0 1 2 3 2 1 2 3 2 1 2 3 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 2 <t< td=""></t<>
11	76.9 or 76.94 to 76.95	3	M2 for 90 ÷ $\sqrt[3]{\frac{160}{100}}$ or 90 × $\sqrt[3]{\frac{100}{160}}$ or M1 for $\sqrt[3]{\frac{160}{100}}$ soi or $\sqrt[3]{\frac{100}{160}}$ soi or $\left(\frac{h}{90}\right)^3 = \frac{100}{160}$ oe
12	k - 3 or $-3 + k$	3	M1 for $5 = \frac{23-8}{k-x}$ oe M1 for $5(k-x) = 23-8$ or better e.g. $[x =] k - \frac{23-8}{5}$
13	22.6 or 22.61 to 22.62	3	M2 for sin [=] $\frac{5}{13}$ oe or M1 for identifying angle <i>AGE</i>
14	165	3	M2 for $\frac{360}{8} + \frac{360}{3}$ oe or M1 for [exterior angle of octagon =] $\frac{360}{8}$ or [exterior angle of triangle =] $\frac{360}{3}$ oe
15(a)	0.8 or $\frac{4}{5}$	1	
15(b)	1180	3	M2 for ($0.5 \times 16 \times 20$) + ($0.5 \times 4 \times 30$) + (80×12) oe or M1 for part area
16(a)	Points plotted at (4.5, 33) and (6.5, 35)	1	

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Mark	Part marks
16(b)	Positive	1	
16(c)	Correct ruled line	1	
16(d)	33.5 to 37.5	1FT	FT from <i>their</i> line providing positive gradient
17(a)	F	1	
17(b)(i)	$\begin{array}{c c} A & & & & \\ \hline & & & & \\ 5 & 7 & 1 & 4 \\ & & 3 & 9 \\ & & 3 & 6 & 2 & 8 \end{array}$	2	B1 for four out of the eight regions correct
17(b)(ii)	Any even square number that is also a multiple of 3	1	
18(a)	$2\mathbf{a} + \mathbf{b}$	1	
18(b)	D	1	
18(c)	\overrightarrow{CF} and \overrightarrow{BG}	2	B1 for each
19	5.53 or 5.54 or 5.534 to 5.543	4	M3 for $2 \times \{(\frac{40}{360} \times \pi \times 10^2) - (\frac{1}{2} \times 10^2 \times \sin 40)\}$ or M2 for $\left[\frac{1}{2} \times\right] 10^2 \times \sin 40$ and $[2 \times] \frac{40}{360} \times \pi \times 10^2$ or M1 for $\left[\frac{1}{2} \times\right] 10^2 \times \sin 40$ or $[2 \times] \frac{40}{360} \times \pi \times 10^2$
20(a)	5 7 7 8 10 7 9 9 10 12	1	
20(b)	7	1	

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Mark	Part marks
20(c)(i)	$\frac{7}{25}$ or 0.28 or 28%	2FT	FT $\frac{their 7}{25}$
			B1 for $\frac{k}{25}$
			If zero scored, then SC1 for $\frac{2}{5}$ or $\frac{6}{15}$ if no
			values in the bottom two rows of the table.
20(c)(ii)	0	1FT	FT $\frac{their 0}{25}$
21(a)	[<i>u</i> =] 35	1	
	[v=] 110	2	B1 for ACB or $ADB = 35$
21(b)	75	2	B1 for 150
			or M1 for $\frac{360-210}{2}$
22(a)	$\frac{x}{x+3}$ final answer	3	B1 for $x(x-3)$ B1 for $(x-3)(x+3)$
22(b)	$\frac{8x+7}{(x-4)(2x+5)}$ final answer	3	B1 for common denominator of $(x - 4)(2x + 5)$ oe
			M1 for $3(2x + 5) + 2(x - 4)$ oe with an attempt to expand the brackets