UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2005 question paper

0580/0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

 CIE will not enter into discussion or correspondence in connection with these mark schemes.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

rate results,

TYPES OF MARK

Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method.
- B marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t.	Anything rounding to
b.o.d.	Benefit of the doubt has been given to the candidate
c.a.o.	Correct answer only (i.e. no 'follow through')
e.e.o.	Each error or omission
f.t	Follow through
i.s.w.	Ignore subsequent working
o.e.	Or equivalent
SC	Special case
s.o.i.	Seen or implied
WW	Without working
www	Without wrong working
\checkmark	Work followed through after an error: no further error made

Page 1	Mark Scheme	Syllabus	.0
	IGCSE – NOVEMBER 2005	0580/0581	D.

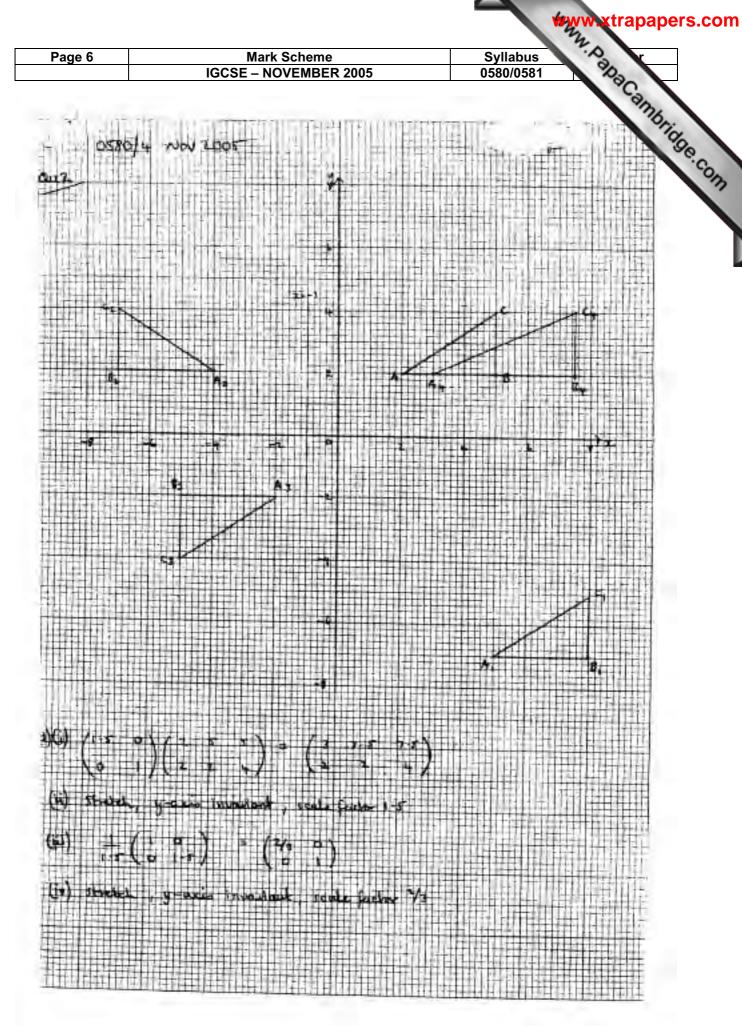
	1		1	50
1	(a)	1216	B1	TABLE.
	(b)	1.47	B1	Total
	(c)	$\frac{11.5 - 9.75}{11.5} \times 100$	M1	Cambridge.Co
		15.2	A 1	ww2 SC1 for 17.9
	(d)	4347 ÷ 7 o.e.	M1	
		621	A1	ww2
	(e)	4347 ÷ 0.9 o.e.	M1	
		4830	A 1	ww2
	(f)(i)	$\frac{2350}{3.25}$ o.e.	M1	Must deal with the minutes correctly
		723 to 723.1	A1	ww2
	(ii)	200.9 to 201	A1ft	their (i) ÷ 3.6 r.o.t. to 3sf or better
				[11]
2	(a)	Correct Scales	S1	Accuracy 2 mm throughout question. From –8 to 8 for <i>x</i> and <i>y</i> possible.
	(b)	Correct triangle ABC	T1	
	(c)(i)	Correct translation with vertices at $(5, -7)$, $(8, -7)$, $(8, -5)$	TR2ft	SC1ft for any translation
	(ii)	Correct reflection with vertices at (-4, 2), (-7, 2), (-7, 4)	FR2ft	SC1ft for two points correct or reflection in $x = 1$ or $y = -1$
	(iii)	Correct rotation with vertices at $(-2, -2), (-5, -2), (-5, -4)$	RN2ft	SC1ft for 2 points correct
	(d)(i)	Correct image drawn with vertices at (3, 2), (7.5, 2), (7.5, 4)	В3	B2 for 3 correct points shown in working. B1 for 2 correct vertices s.o.i.
	(ii)	$\frac{1}{15} \begin{pmatrix} 1 & 0 \\ 0 & 1.5 \end{pmatrix}$ o.e.	B2	SC1 for $\frac{1}{1.5}$ or $\begin{pmatrix} 1 & 0 \\ 0 & 1.5 \end{pmatrix}$
	(iii)	Stretch	B1	
		y-axis invariant o.e.	B1	
		factor $\frac{2}{3}$	B1	
		, •		[16]
<u> </u>			İ]

Page 2	Mark Scheme	Syllabus	.0
	IGCSE – NOVEMBER 2005	0580/0581	8

3 (a)(i)	60	B1	THE STATE OF THE S
(ii)	$(RS^2) = 7^2 + 15^2 - 2 \times 7 \times 15 \cos 60$	M2	M1 – if one error in formula
	13	A2	A1 for (RS^2) = 169 www-
(b)(i)	145	B1	
(ii)	$\frac{\sin Q}{15} = \frac{\sin 55}{14} \text{ o.e.}$	M1	
	$\sin Q = \frac{15\sin 55}{14}$	М1	Implies previous method
	61.4	A 1	www3
(iii)	(R =) 63.6	B1	
	$(PQ) = \frac{14 \sin'63.6'}{\sin 55}$	M1	their sin(180 – 55 – b(ii)). Could be explicit equivalent cosine rule
	15.3	A 1	www3
(c)	$\frac{1}{2}$ 7.15 sin'60'+ $\frac{1}{2}$.15.'15.3'. sin 55	M2	M1 for one correct triangle area in working (45.466 + 93.998)
	139 or 140 www	A2	A1 for 139.4 to 139.5 www4
			[16]
4 (a)(i)	12	В1	
(ii)	3	В1	
(iii)	21	В1	
(iv)	2	В1	
(v)	14/ ₂₄ o.e	В1	Accept probabilities as fractions/decimals/%
(vi)	¹² / ₁₉ o.e.	B1	
(b)(i)	12/x11/ /22×1/21	M1	
	132/ ₄₆₂ o.e. (0.286)	A 1	2/7 in simplest form www2
(ii)	10/ ₂₂ ×12/ ₂₁	M1	
	their $\frac{10}{22} \times \frac{12}{21} \times 2$ o.e.	M1	
	²⁴⁰ / ₄₆₂ o.e.(0.519)	A 1	40/77 in simplest form www3
			[11]

Page 3	Mark Scheme	Syllabus	.0
	IGCSE – NOVEMBER 2005	0580/0581	10.

5	(a)	0.9 or better	B1	(0.8888) -10.1111) -3 to 3 for x, and -11 to 2 for y possible
		-10.1 or better	B1	-10.1111)
	(b)(i)	Correct scales	S1	−3 to 3 for x, and −11 to 2 for y possible
	(ii)	12 points correctly plotted	P3ft	P2ft for 10 or 11 correct (acc. is 1 mm)
				P1ft for 8 or 9 correct
		both branches with correct shape	C1ft	Acc. $\frac{1}{2}$ small square, correct shape, not ruled
		Graph does not cross the y-axis	B1	
	(c)	Any integer ≥ 1	B1	
	(d)	Correct ruled line from –3 to +3	B2	SC1 for line with gradient of 2 or passing through $(0, -5)$ but not $y = -5$.
	(e)(i)	-0.45 to -0.3	B1	
		0.4 to 0.49	B1	
		2.9 to 2.99	B1	
	(ii)	$x^2 - 1 = 2x^3 - 5x^2$	М1	i.e. correct multiplication to remove fraction
		$2x^3 - 6x^2 + 1 = 0$	A1	www2
	(f) (i)	Tangent drawn with gradient ≈ 2	B1	Parallel by eye to $y = 2x - 5$
	(ii)	Linear eqn. in x and y with gradient 2	B1	
		c = their intercept	B1	within 1 mm, dep on linear eqn in x and y
				[19]
6	(a)	2	B1	
	(b)	$\frac{1}{3} \times 6 \times 5 \times 3$ o.e.	M1	
		30	A 1	
	(c)	Isos. triangle or invtan $\binom{3}{3}$ o.e.	M1	
		45	A1	www2
	(d)	$(BD) = \sqrt{6^2 + 5^2}$ o.e. $BF = \frac{1}{2}BD$	M1	
		$BF = \frac{1}{2}BD$	M1	Dep. (BF = 3.905)
		angle = invtan $\frac{3}{\text{their }BF}$	M1	Dep on previous method
		37.5 to 37.54	A1	www4
	(e)	$(\hat{t}) = 3^2 + (their FB)^2$ o.e.	M1	Not for FB = 3
		4.92 to 4.93	A 1	ww2
				[11]


Page 4	Mark Scheme	Syllabus	.0
	IGCSE – NOVEMBER 2005	0580/0581	10.

63 (ii) their (a) x 24 (iii) 1512000 (b)(i) 35.03 x 24 x 2.25 (ii) 1900 (c)(i) $\pi \times 12.5^2 \times 14$ (6870 or better (iii) 2 their (a)(ii) 2 their (b)(i)] (iii) 2 their (a)(iii) 2 their (c)(i)] (iii) 1000 (a) 40 x 24 (b) 40 x 24 (c) 40 x			I	17/1/	
(ii) ther (a) $\times 24$	7 (a)(i)	$\frac{1}{2}(2.5+1.1)\times35$ o.e.	M1	N ST	30
(ii) ther (a) $\times 24$		63	A1		6.6
(iii) 1512000	(ii)	their (a) x 24	M1		
(b)(i) $35.03 \times 24 \times 2.25$		1512	A1ft		
1891.62 A1 www2 www2 their b(i) rounded to nearest 100 (c)(i) $1 \times 12.5^2 \times 14$ M1 $(6872.2339 \text{ or } 6873.125 (\pi = 3.142))$ (ii) [their (a)(ii) + their (c)(i)] M1 $\times 1000000$ A1 o.e. e.g. using litres Implied by 2.54 www4 www4 [14]	(iii)	1512000	B1ft	their (a)(ii) x 1000	
(ii) 1900	(b)(i)	35.03 x 24 x 2.25	М1		
(c)(i) $\pi \times 12.5^2 \times 14$ M1 6870 or better A1 (6872.2339 or 6873.125 ($\pi = 3.142$)) (ii) [their (a)(ii) + their (c)(i)] M1 $\times 1000000$ A1 o.e. e.g. using litres $\times 1000000$ M1 Implied by 2.54 $\times 1000000$ M1 Implied by 2.54 $\times 1000000$ M2 Www.4 $\times 10000000$ M2 SC1 for $\frac{40}{x+2}$ seen $\times 1000000000000000000000000000000000000$		1891.62	A1	www2	
(ii) [their (a)(ii) + their (c)(i)] M1 $x 1 000 000$ A1 o.e. e.g. using litres $+ (60 \times 60 \times 24)$ M1 Implied by 2.54 $+ (60 \times 60 \times 24)$ A1 www4 [14] 8 (a)(i) $\frac{40}{x+2} = \frac{40}{x} - 1$ o.e. $- (40 \times 40(x+2) - x(x+2) \text{ o.e.}$ M1 Correctly removes the fraction (iii) $- (10 \times 40 \times 40 \times 80 - x^2 - 2x \times x^2 + 2x - 80 = 0$ E1 Correct conclusion – no errors (iii) $- (10 \times 8)$ B1 (iv) B1	(ii)	1900	B1ft	their b(i) rounded to nearest 100	
(ii) [their (a)(ii) \circ their (c)(i)] M1 \times 1 000 000 A1 o.e. e.g. using litres \circ (60 x 60 x 24) M1 Implied by 2.54 \circ 2 days 13 hours A1 www4 [14] B1 SC1 for $\frac{40}{x+2}$ seen \circ 40 x = 40 (x + 2) - x(x + 2) o.e. M1 Correctly removes the fraction \circ 40 x = 40 x + 80 - x² - 2x X² + 2x - 80 = 0 E1 Correct conclusion - no errors (iii) -10 B1 B1 \circ 8 B1 their positive x dep on one of each sign (b)(i) $m = n + 2.55$ o.e. B1 \circ 2m = 5n o.e. B1 B1 (ii) 2(n + 2.55) = 5n M1 f.t. their linear equations in n and m any correct method to an equation in one variable	(c)(i)	$\pi \times 12.5^2 \times 14$	M1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6870 or better	A 1	$(6872.2339 \text{ or } 6873.125 \ (\pi = 3.142))$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(ii)	[their (a)(ii) + their (c)(i)]	М1		
2 days 13 hours A1 www4 [14] 8 (a)(i) $40/x$ (ii) $\frac{40}{x+2} = \frac{40}{x} - 1$ o.e. $40x = 40(x+2) - x(x+2)$ o.e. $40x = 40x + 80 - x^2 - 2x$ $x^2 + 2x - 80 = 0$ (iii) -10 8 B1 (iv) 8 B1 (iv) 8 B1 (b)(i) $m = n + 2.55$ o.e. $2m = 5n$ o.e. (iii) $2(n+2.55) = 5n$ M1 www4 Correctly removes the fraction Correct conclusion – no errors B1 B1 their positive x dep on one of each sign f.t. their linear equations in n and m any correct method to an equation in one variable		x 1 000 000	A 1	o.e. e.g. using litres	
8 (a)(i) $40/x$ (ii) $\frac{40}{x+2} = \frac{40}{x} - 1$ o.e. $40x = 40(x+2) - x(x+2)$ o.e. $40x = 40x + 80 - x^2 - 2x$ $x^2 + 2x - 80 = 0$ (iii) -10 8 (b)(i) $m = n + 2.55$ o.e. $2m = 5n$ o.e. (iii) $2(n+2.55) = 5n$ M1 Correctly removes the fraction Correctly removes the fraction E1 Correct conclusion – no errors B1 their positive x dep on one of each sign f.t. their linear equations in n and m any correct method to an equation in one variable		÷ (60 x 60 x 24)	M1	Implied by 2.54	
B1 (ii) $\frac{40}{x+2} = \frac{40}{x} - 1$ o.e. $40x = 40(x+2) - x(x+2)$ o.e. $40x = 40x + 80 - x^2 - 2x$ $x^2 + 2x - 80 = 0$ (iii) -10 B1 (iv) 8 (b)(i) $m = n + 2.55$ o.e. $2m = 5n$ o.e. (iii) $2(n+2.55) = 5n$ B1 M2 SC1 for $\frac{40}{x+2}$ seen Correctly removes the fraction Correctly removes the fraction B1 Correct conclusion – no errors B1 B1 Their positive x dep on one of each sign B1 Fit. their linear equations in n and m any correct method to an equation in one variable		2 days 13 hours	A 1	www4	
(ii) $\frac{40}{x+2} = \frac{40}{x} - 1$ o.e. $\frac{40}{x+2} = \frac{40}{x} - 1$ o.e. $\frac{40}{x+2} = \frac{40}{x} - 1$ o.e. $\frac{40}{x+2} = \frac{40}{x+2} - 1$ Correctly removes the fraction $\frac{40}{x+2} = \frac{40}{x+2} - 1$ Correctly removes the fraction $\frac{40}{x+2} = \frac{40}{x+2} - 1$ Correctly removes the fraction $\frac{40}{x+2} = \frac{1}{x+2} - 1$ Correctly removes the fraction $\frac{1}{x+2} = \frac{1}{x+2} - 1$ Scalar in $\frac{1}{x+2} = \frac{1}{x+2} - 1$ Correctly removes the fraction $\frac{1}{x+2} = \frac{1}{x+2} - 1$ Scalar in $\frac{1}{x+2} = \frac$				Ī	[14]
$\frac{1}{x+2} = \frac{1}{x} - 1 \text{ o.e.}$ $40x = 40(x+2) - x(x+2) \text{ o.e.}$ $40x = 40x + 80 - x^2 - 2x$ $x^2 + 2x - 80 = 0$ $(iii) -10$ 8 $(iv) 8$ $(b)(i) m = n + 2.55 \text{ o.e.}$ $2m = 5n \text{ o.e.}$ $(iii) 2(n + 2.55) = 5n$ $M1 Correctly removes the fraction Correctly removes the fraction B1 Correct conclusion – no errors B1 B1 Their positive x dep on one of each sign B1 F.t. their linear equations in n and m any correct method to an equation in one variable$	8 (a)(i)	40/x	B1		
$40x = 40x + 80 - x^2 - 2x$ $x^2 + 2x - 80 = 0$ E1 Correct conclusion – no errors (iii) -10 8 B1 (iv) 8 B1 (b)(i) $m = n + 2.55$ o.e. $2m = 5n \text{ o.e.}$ B1 (ii) $2(n + 2.55) = 5n$ M1 f.t. their linear equations in n and m any correct method to an equation in one variable	(ii)	$\frac{40}{x+2} = \frac{40}{x} - 1$ o.e.	M2	SC1 for $\frac{40}{x+2}$ seen	
$(iii) \begin{array}{c} x^2 + 2x - 80 = 0 \\ -10 \\ 8 \\ (iv) \\ 8 \\ (b)(i) \end{array} \begin{array}{c} \textbf{B1} \\ \textbf{B1} \\ \textbf{B1ft} \end{array} \begin{array}{c} \textbf{B1} \\ \textbf{B1ft} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B6} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B6} \\ \textbf{B7} \\ \textbf{B7} \\ \textbf{B7} \\ \textbf{B8} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B6} \\ \textbf{B6} \\ \textbf{B7} \\ \textbf{B7} \\ \textbf{B7} \\ \textbf{B7} \\ \textbf{B8} \\ \textbf{B8} \\ \textbf{B9} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B1} \\ \textbf{B2} \\ \textbf{B2} \\ \textbf{B3} \\ \textbf{B4} \\ \textbf{B4} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B5} \\ \textbf{B6} \\ \textbf{B7} \\ \textbf{B7} \\ \textbf{B7} \\ \textbf{B7} \\ \textbf{B8} \\ \textbf{B8} \\ \textbf{B8} \\ \textbf{B9} \\ \textbf$		40x = 40(x + 2) - x(x + 2) o.e.	М1	Correctly removes the fraction	
(iii) -10 8 $B1$ $B1$ (iv) 8 $B1ft$ their positive x dep on one of each sign (b)(i) $m = n + 2.55$ o.e. $B1$ $2m = 5n$ o.e. $B1$ (ii) $2(n + 2.55) = 5n$ $M1$ f.t. their linear equations in n and m any correct method to an equation in one variable		$40x = 40x + 80 - x^2 - 2x$			
(iv) 8 (b)(i) $m = n + 2.55$ o.e. $2m = 5n$ o.e. (ii) $2(n + 2.55) = 5n$ M1 f.t. their linear equations in n and m any correct method to an equation in one variable		$x^2 + 2x - 80 = 0$	E1	Correct conclusion – no errors	
(iv)8B1fttheir positive x dep on one of each sign(b)(i) $m = n + 2.55$ o.e.B1 $2m = 5n$ o.e.B1(ii) $2(n + 2.55) = 5n$ M1f.t. their linear equations in n and m any correct method to an equation in one variable	(iii)	-10	B1		
(b)(i) $m = n + 2.55$ o.e.B1 $2m = 5n$ o.e.B1(ii) $2(n + 2.55) = 5n$ M1f.t. their linear equations in n and m any correct method to an equation in one variable		8	В1		
2m = 5n o.e. (ii) $2(n + 2.55) = 5n$ B1 f.t. their linear equations in n and m any correct method to an equation in one variable	(iv)	8	B1ft	their positive x dep on one of each sign	
(ii) $2(n + 2.55) = 5n$	(b)(i)	m = n + 2.55 o.e.	В1		
any correct method to an equation in one variable		2m = 5n o.e.	B1		
m = 4.25 A1	(ii)	2(n+2.55) = 5n	M1	any correct method to an equation in one	
		m = 4.25	A 1		
n = 1.7 A1		<i>n</i> = 1.7	A 1		
[13]					[13]

Page 5	Mark Scheme	Syllabus	3
	IGCSE – NOVEMBER 2005	0580/0581	12

				7.
9	(a)	160 < <i>h</i> ≤ 170	B1	dition
	(b)(i)	Mid values 125, 135, 145, 155, 165, 175, 185, 195	M1	Allow 1 slip
		(15 x 125 + 24 x 135 + 36 x 145 + 45 x 155 + 50 x 165 + 43 x 175 + 37 x 185 + 20 x 195)	M1	Dep on mid values $\pm~0.5$, allow 1 slip in midvalues (43830)
		÷ 270	М1	Dep on previous method
		162 or better	A1	(162.333) www4
	(ii)	Mid-values are an estimate of each interval o.e.	В1	e.g. exact values not given
	(c)	p = 15, q = 39, r = 75	В2	B1 for 2 correct. If no labels, take in order given
	(d)	Correct scales	S1	
		9 points correctly plotted ft	P3ft	P2ft for 7 or 8 correct acc. 1 mm P1ft for 5 or 6 correct
		Curve or line through 9 points	C1ft	Dep on 'S' shape within $\frac{1}{2}$ small square of points
	(e)(i)	162 to 164	В1	
	(ii)	176 to 178	В1	
	(iii)	28 to 30	B1	
	(iv)	167.5 to 168.5	B1	
	(f)	Uses 240 or 241 on cumul, freq. axis	M1	e.g. annotates graph or shows values in working
		186.5 to 188	A1	ww2
				[19]

Page 6 Mark Scheme **Syllabus** 0580/0581 **IGCSE - NOVEMBER 2005**

WWW.xtrapapers.com Page 7 **Mark Scheme Syllabus** 0580/0581 **IGCSE - NOVEMBER 2005** (c) well
(c) x= = 0:10 per = 0:10 (c)
(d) x= 1 = 12xP - 5xP = 2xN = 6xP + 1 = 0
(e) (i) (ii) (ii, 6)

Page 8 Mark Scheme **Syllabus IGCSE - NOVEMBER 2005** 0580/0581 The life typ late

At Name of the transport of the transp Pises