

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2008 question paper

0580, 0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.xtrapapers.com

Page 2	Mark Scheme	Syllabus	· A er
	IGCSE – May/June 2008	0580, 0581	SP3

1 (-) (1)	250	D1	SC1 for 12.5 ÷ 5 × 52, implied by 15 $\frac{their (a)(ii)}{2450} \times 100 - 100, \frac{2450}{100} = \frac{150}{x}$
1 (a) (i)	250	B1	7%
(ii)	their $(a)(i) \div 5 \times 52$ o.e.	M1	SC1 for $12.5 \div 5 \times 52$, implied by $12.5 \div 52$
	2600 ft www2	A1 ft	1
(iii)	$\frac{their (a)(ii) - 2450}{2450} \times 100$ o.e.		their (a)(ii) 100 100 2450 150
	$\frac{2450}{2450}$ × 100 ° 0.e.	M1	$\frac{\text{their (a)(ii)}}{2450} \times 100 - 100, \ \frac{2450}{100} = \frac{150}{x}$
	6.1 (22) ft www2	A1ft	ft M & A only if their (a)(ii) > 2450
(b) (i)	$20 \div 5 \times 3$	M1	
	12 www2	A1	Accept 12, 8 or 8, 12
(ii)	<i>their</i> (b)(i) \div 3 and (20 – <i>their</i> (b)(i)) \div 2.5	M1	4 and 3.2 or 7.2 or 7h 20 mins seen imply
			M1
	7 hours 12 mins cao www2	A1	Condone poor notation e.g. 7-12
(iii)	2.78 (2.777–2.778) o.e. cao	B1	o.e. must have units stated e.g.
	o.e. in other units		0.7716m/s, 46.29 – 46.30 m/min
(iv)	16 07 o.e. ft	B1 ft	ft their (b)(ii) + 08 55 iff finishes on same
			day and (b)(ii) has hours and mins
(c)	$20 \times 100000 \div 80$ o.e.	M1	
	25 000 or 2.5×10^4 www2	A1	25 000 seen in final ans. After M0, SC1
			for figs 25 or 0.00004 final answer [13]

2 (a) (i)	(x+4)(x-5)	B2	If B0, SC1 if of form $(x \pm 4)(x \pm 5)$,
(ii)	-4,5 ft	B1 ft	Only ft the SC
			-4, and 5 not from $(x - 4)(x + 5)$.
(b)	$-(-2) + \sqrt{(-2)^2 - 43 - 2}$		B1 for $(-2)^2 - 4(3)(-2)$ (or better) seen
	$\frac{-(-2)\pm\sqrt{(-2)^2-4.3-2}}{2.3}$	B1,B1	inside a square root.
	2.3		The expression must be in the form
			$\frac{p + (\text{or})\sqrt{q}}{r} \text{ then } \mathbf{B1} \text{ for } p = -(-2) \text{ and}$
			r = 2.3 or better
			Allow recoveries from incomplete lines
	- 0.55 , 1.22 cao	B1,B1	If B0, SC1 for -0.5 and 1.2 or both
	-0.55, 1.22 Cao	л,л	answers correct to 2 or more decimal
			places (rounded or truncated).
			•
		D1	-0.54858, 1.21525
(c) (i)	(m-2n)(m+2n)	B1	
(ii)	-12	B1	2
(iii)			B1 for $(4x^2 + 6x + 6x + 9)$ or
	20x + 5 o.e. cao final ans	B2	$(x^2 - x - x + 1)$ or
			(2x+3-2(x-1))(2x+3+2(x-1))
(iv)	$4n^2 = m^2 - y \text{o.e.}$	M1	(2x + 3 - 2(x - 1))(2x + 3 + 2(x - 1)) M1 for correct re-arrangement for n^2 term
	$m^2 - v$		(may be $-n^2$)
	$n^{2} = \frac{m^{2} - y}{4}$ o.e. $(n) = \sqrt{\frac{m^{2} - y}{4}}$ o.e. www3	M1	M1 for correct division by 4 or -4
	4		M1 for correctly taking square root of n^2
	$m^2 - y$	M1	term
	$(n) = \sqrt{\frac{m-y}{4}}$ o.e. www3		$\sqrt{1+1}$
	Mark final answer		SC2 for $\sqrt{\frac{y \pm m^2}{4}}$ or $\sqrt{\frac{m^2 - y}{4}}$ o.e. ww
(d) (i)	4 or -4 or ±4	B1	
(ii)	$n(m^4 - 16n^4)$ or	M1	Correctly taking out <i>n</i> or a correct factor
	$(m^2n - 4n^3)(m^2 + 4n^2)$ or		with <i>n</i> still in one bracket
	$(m^2n + 4n^3)(m^2 - 4n^2)$ or		
	$n(m-2n)(m+2n)(m^2+4n^2)$	A1	Must be final answer [17]

www.xtrapapers.com

Doro		R	lork Sohomo		Sullahun ¹⁷ ,0 ar
rage	Page 3 Mark Scheme IGCSE – May/June 200		008	Syllabus er 0580, 0581	
			. May/ound 20	2000,0001	
3					Syllabuser0580, 0581Accept all probability answers fractions (non-reduced or reduced decimals or percentages. -1 once for 2 sf answers or correct words. Condone numerical errors in simplifying or converting after correct
(a) (i)	$\frac{1}{3},\frac{3}{8},$	$\frac{6}{8}, \frac{2}{8}$ o.e.		B3	-1 each error bod if no letters given
(ii)	$\frac{2}{3} \times \frac{5}{8}$			M1	
	$\frac{5}{12} = 0.$	e.	www2	A1	$\frac{10}{24}$, etc., 0.416(6)
(iii)	their $\frac{5}{12}$	$+\frac{1}{3}\times\frac{6}{8}$		M1	
	2	. cao	www2	A1	$\frac{16}{24}, \frac{8}{12}, \text{etc.}, 0.666(6)$
(b) (i)	$\frac{3}{10} \times \frac{2}{9}$	$\times \frac{1}{8}$		M1	
	1	o.e.	www2	A1	$\frac{6}{720}$, etc., 0.00833(3)
(ii)	119).e.		B1ft	$\frac{714}{720}$, etc., 0.991(6) ft 1 – their (i) not
					for 7/10Could start again and have a correctanswer independently[10]

4 (a) (i)	36 (36.0–36.4)	B1	
(ii)	50 (50.0–50.4)	B1	
(iii)	29 (28.6–29.4)	B1	
(iv)	20	B1 B2	If B0, SC1 for 19 or 21 or 180 seen
(b) (i)	p = 16, q = 4	B1,B1	If B0, SC1 if <i>p</i> and <i>q</i> add up to 20
(ii) (ii)	$\left(\frac{7220}{200}\right) = 36.1 \text{ cso}$ www4	B4	Answer 36 scores 4 marks after some correct working shown with no incorrect working seen M1 for using mid-values at least four correct from 5, 15, 25, 35, 45, 55, 65, 75 M1 (dep on correct mid values or mid- values ± 0.5) for $\sum fx$ (at least four correct products)
			M1 (dependent on 2^{nd} M1) for dividing sum by 200 or 180 + their p + their q
(c)	8.2 (8.19–8.20), 11.4 , 5 (5.00–5.01)	B4	B3 for 2 correct or B2 for 1 correct After B0, SC2 for fd's 2.7(3) o.e., 3.8 o.e, 1.6(6) o.e. or SC1 for 2 of fd's correct (15)
5 (a) (i)	$360 \div 8$ or $(8-2) \times 180$	M1	allow 6×180

www.xtrapapers.com

		2.
Page 4	Mark Scheme	Syllabus er
	IGCSE – May/June 2008	0580, 0581
	·	

	190 their(2(0, 0)) = 2 their(2(0, 0	M1	demondent at
	$180 - \text{their} (360 \div 8) \text{ o.e. } \div 8$	M1	dependent
(ii)	45° used or use implied o.e.	E1	Accept sketch with values
(b) (i)	1 45	M1	For o.e. allow implicit expression
	$\frac{l}{12} = \cos 45$ o.e.		
	(PH =) 8.49 (8.485) www2	A1	dependentAccept sketch with valuesFor o.e. allow implicit expressionAccept $\sqrt{72}$, $2\sqrt{18}$, $3\sqrt{8}$, $6\sqrt{2}$
(ii)	$(PQ =) 2 \times \text{their } PH + 12 \text{ o.e.}$	M1	
	$(P\tilde{Q} =)$ 29.(0) (28.96–29.00) ft www2	A1 ft	ft their PH accept surd form
(iii)	their $PH \times$ their $PH \div 2$ o.e.	M1	
. ,	(Area APH =) 36 (35.95–36.1) ft www2	A1 ft	ft their PH
(iv)	$(\text{their } PQ)^2 - 4 \times \text{their area of triangle o.e.}$	M2	If M0, M1 for a clear collection of areas
	(Area octagon =) 695 (694.0–697.1) cao		leading to the octagon possibly without
	www3	A1	any calculation shown
(c) (i)	0.5 of their PQ o.e.	M1	e.g. $6 + PH$, $6\tan 67.5^{\circ}$
	14.5 (14.47–14.53) cao www2	A1	accept surd form
(ii)	$\pi \times (their r)^2$	M1	(660.5)
	their circle area		
	<u>their circle area</u> $\times 100$	M1	Dependent on first M1 and circle smaller
	their octagon area		than the octagon
	94.8 (94.35 to 95.60) cao www3	A1	[17]

6 (a) (i)	$\begin{pmatrix} 2\\1 \end{pmatrix}$	B1	Allow (2 1), condone omission of brackets
(ii)	$\begin{pmatrix} 2\\1 \end{pmatrix}$ ft	B1ft	Allow (2 1), condone omission of brackets ft their (i) if a vector
(b)	Translation $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$ o.e.	B1, B1	Allow (0 –4), condone omission of brackets, allow in words Any extra transformation spoils both marks
(c)	y > 0 o.e. x < 2 o.e. $y > \frac{1}{2}x \text{ o.e.}$ y < 2x + 4 o.e.	B1 B1 B1 B2	For all four, condone strict inequalities and only penalise first incorrect sign, which may be = or an inequality sign If B0, B1 for 2x or for 4 if other co-efficient is not zero $y < \frac{1}{2}x + 4$ gets zero [9]

7 (a) (i)	cyclic		B1	Condone concyclic
(ii)	Any one of 40, 45, 50		B1	Angle $BCT = 40^{\circ}$ is inconsistent with ST
	Any one of 20, 25, 30		B1	parallel to OB. So different values of
	Any one of 105, 110, 115		B1	angles <i>x</i> , <i>y</i> , <i>z</i> , <i>OCT</i> and <i>AOC</i> can be
				arrived at, depending on route taken.
(iii)	Any one of 80, 85, 90		B1	
(iv)	Any one of 210 , 215 , 220 , 225 , 230		B1	
(b) (i)	Similar (or enlargement)		B1	
(ii)	$\left(\frac{7}{10}\right)^2$ or $\left(\frac{10}{7}\right)^2$ o.e. seen		M1	(0.49), (2.04)
		ww2	A1	It is possible to do (iii) then (ii) and full marks can still be scored
(iii)	1 10 1 10 20		M1	
	$\frac{1}{2} \times 10 \times height = 20$		A1	
	2	ww2		[11]

		www.xtrapapers.c
Page 5	Mark Scheme	Syllabus er
	IGCSE – May/June 2008	0580, 0581

8 (a)		M1	M1 for method of compound inter Condone absence of labels P2ft for 4 correct, P1ft for 3 correct
	108 (.16) (allow 108.2(0)) www2	A1	
(b)	148 (.02) 324 (.3)	B1 B1	
(c)	Correct axes full domains	S1	Condone absence of labels
	5 correct pts 100, 148 ft, 219, 324ft, 480	P3ft	P2ft for 4 correct, P1ft for 3 correct
			Points must be in correct square vertically, including on line
	Smooth exponential curve, correct shape	C1	Scale error – remove that part and try to
	through 5 points		mark the rest
(d) (i)	265 - 270	B1ft	If out of range, then ft their graph at 25
			years
(ii)	17 or 18 cao	B1	
(e) (i)	$(100) \times 7 \times 20$		
	(100) o.e.	M1	
	$100 + 7 \times 20$ or better	E1	No errors
(ii)	380	B 1	
(iii)	Correct straight ruled line for x – range 0 to	L2	P1ft for 2 of (0,100), (20,240) (40,380)ft
	35		correctly plotted
(f)	27 - 29 cao	B1	[17]

9 (a) (i)	p + r	B 1	Answers in bracketed column form penalise only once throughout
(ii)	- p + r	B1	
(iii)	$-\mathbf{p}+\frac{2}{3}\mathbf{r}$	B1	
(iv)	$\mathbf{p} + \frac{1}{2}\mathbf{r}$	B1	
(b) (i)	$\frac{3}{2} \times (-\mathbf{p} + \frac{2}{3}\mathbf{r}) \text{ or } -\frac{3}{2}\mathbf{p} + \mathbf{r}$ isw after correct answer seen	B1 ft	ft only $\frac{3}{2}$ × their (a)(iii)
(ii)	$\overrightarrow{QP} + \overrightarrow{PS}$ o.e.	M1 A1 ft	o.e. is any correct route of at least 2 vectors ft their (b)(i) – r
	$-\frac{3}{2}\mathbf{p}$ www 2		
(c)	lie on a straight line	B1	dependent on their (b)(ii) being a multiple of p [8]

10(a) (i)	4	B1	
(ii)	24	B1	
(b) (i)	x + 12, x + 14 o.e.	B1,B1	Any order ignore ref to g and i
(ii)	(x + 14 - x) and $(x + 12 - (x + 2))$		x + 12 and $x + 14$ must be seen to be used
	14 - 10 or $14 - 12 + 2$ or 4	E1	No errors seen
(iii)	(x+2)(x+12) - x(x+14)	B1	Subtraction can be implied later
	24	E1	Dep on B1 and no errors anywhere for the E mark
(c) (i)	4	B1	
(ii)	20	B1	
(d) (i)	4	B1	
(ii)	x + 2n o.e., $x + 2 + 2n$ o.e.	B1,B1	
(iii)	4 <i>n</i>	B1	Allow $4 \times n$, $n \times 4$, $n4$ [13]