UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

0580, 0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	age 2	Mark Scheme: Teachers' version	Syllabus
		IGCSE – May/June 2009	0580, 0581
Abbrev	riations		Cambridge
cao		nswer only	and the second
cso	correct so	olution only	, co
dep	dependen	t	- On
ft	follow th	rough after error	
isw	ignore su	bsequent working	

Abbreviations

dependent follow through after error ft ignore subsequent working or equivalent isw

oe SC

Special Case without wrong working www

1 (a)	(\$) 450	B2	M1 for $650 \div (9+4) \times 9$
			$(\div 14 \text{ does not imply } 9 + 4)$
(b) (i)	(\$) 120	B2	M1 for 0.8×150 o.e.
(ii)	(\$) 80 ft	B2 ft	M1 for $(150 - \text{their}(\mathbf{b})(\mathbf{i})) \div 0.375$ o.e.
			only if +ve. After M0 , SC1 for answer 320
(c) (i)	(\$) 441	B2	M1 for 400×1.05^2 o.e. or for answer 41
(ii)			If use Simple Int in (i), M0, M0 in this
			part
	$\frac{1}{2}$ their ((i) – 400) ÷ 400 × 100 o.e.	M2	i.e. a full explicit method for r
			If M0 ,
	5.125 or 5.13 or 5.12 c.a.o. www3	A1	M1 for $\frac{400 \times r \times 2}{100}$ = their (i) – 400
	5.125 of 5.13 of 5.12 c.a.o. wwws	AI	$\frac{100}{100} = \text{tileli (i)} - 400$
			or their (i) $\div 400 \times 100 \text{ then } -100$
			or $\frac{\text{their}(\mathbf{i}) - 400}{1000} \times 100$ (s.o.i. by 10.25)
			or ${400}$ ×100 (s.o.i. by 10.25)
			100
			If still M0 , SC1 for answers 55.125 or
			55.12 or 55.13 or 55.1 or 0.05125 or
			0.0512 or 0.0513
			[11]

2 (a)	1	B1	
(b)	2.5 o.e.	B1	
(c)	2.96 c.a.o.	B2	If B0 , M1 for $15 \times 1 + 10 \times 2 + 7 \times 3 + 5 \times 4 + 6 \times 5 + 7 \times 6$ (allow one slip) implied by 148 seen
			Ignore subsequent rounding
(d)	60 × 2.95 (= 177)	M1	
	their 177 – their 148 (or 50 × their 2.96)	M1	Dependent on first M and <u>only if</u> positive or M1 for
	(Mean of new rolls =) 2.9 c.a.o. www3	A1	$\frac{\text{their } 148(50 \times \text{their } 2.96) + x(\text{or } 10x)}{60} = 2.95$
			then M1 for $x(\text{or } 10x) = 60 \times 2.95 - \text{their } 148$
			(or $50 \times$ their 2.96) and only if positive [7]

Page 3	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – May/June 2009	0580, 0581	100

3 (a)	$(\sin P) = \frac{48}{0.5 \times 10 \times 14} \text{ o.e. } \underline{\text{fraction}}$	M2 A1	M1 for $0.5 \times 10 \times 14 \sin P = 48$ e Allow $0.5 \times 10 \times 14 \sin 43.3 = 48$ in but no further credit
(J-)	P = 43.29 cao		ICMO MI Consequent in all it statement
(b)	$10^2 + 14^2 - 2 \times 10 \times 14\cos 43.3 (= 92.2)$	M2	If M0, M1 for correct implicit statement
	Evaluating square root	M1	M1 (dependent on M2) for square root of
			correct combination (not negative)
			i.e 16cos43.3 (11.64) implies M2M0
	(QR =) 9.6 (0) (9.60 to 9.603) c.a.o. ww2	A1	[7]

4 (a)	$(AB =) \frac{250}{\sin 126} \times \sin 23$ (s.o.i by 120) 121 (120.7 to 121) (m) c.a.o. www3	M2 A1	M1 for $\frac{AB}{\sin 23} = \frac{250}{\sin 126}$ o.e. (implicit)
(b) (i)	280	B1	
(ii)	(0)69 c.a.o.	B2	SC1 for answer 249 [6]

5 (a) (i)	1.5, 3.75, -1.5	B1,B1,B1	
(ii)	12 points plotted ft	P3 ft	P2 ft for 10 or 11 points,
	Curve through at least 10 points and correct		P1 ft for 8 or 9 points
	shape over full domain	C 1	i.s.w. if two branches joined
	Two separate branches, one on each side of		
	y-axis, neither in contact with y-axis	B1	Independent
(b)	$-1.4 \le x \le -1.1$ and $3.1 \le x \le 3.4$	B1,B1	i.s.w. 3rd answer if curve cuts $y = 1$ again
(c) (i)	Correct ruled tangent at $x = 2$ or $x = -2$	M1	Long enough to be able to find gradient
	Evidence of rise/run	M1	Dependent – check their graph against
			gradient of 1 – must be correct side of 1
			No tangent drawn M0M0
	0.8 to 1.2	A1	
(ii)	0.8 to 1.2 inc. or same answer as (i) ft	B1 ft	
(d) (i)	Correct ruled line to cut curve for all	B1	Within $\frac{1}{2}$ square of $(-1, 1)$ and $(1, -1)$
	possible intersections (at least 2)		
(ii)	-1.3 to -1.05, 1.05 to 1.3 inclusive	B1, B1	i.s.w. any extra answers
(e)	$y = kx$ with $k \ge \frac{1}{2}$ o.e. or $x = 0$	B2	If B0 , allow SC1 for $y = kx$ with $k < \frac{1}{2}$ or
			for y-axis stated
			[19]

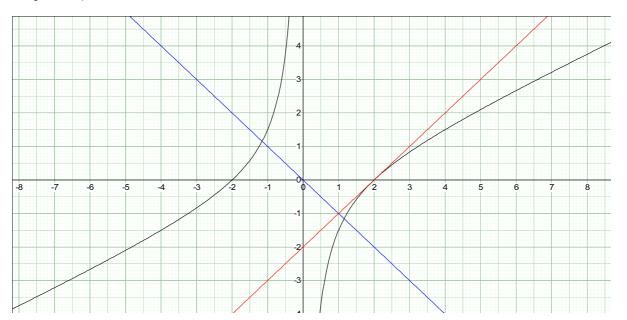
Page 4	Mark Scheme: Teachers' version	Syllabus	· Ag er
	IGCSE – May/June 2009	0580, 0581	90

6 (a) (i)	$0.5[(x+6)+(x+2)] \times (x+1) (=40)$ or	M1A1	M1 for any algebraic use of half backeight (Brackets may be implied later) May be first line If this first line, then M0
	better		height (Proclete may be implied leter)
	0.5(2x+8)(x+1) (= 40) o.e.		(Brackets may be implied later) May be first line
	$0.5(2x^2 + 8)(x + 1) (-40)$ o.e. $0.5(2x^2 + 10x + 8) (= 40)$ o.e.		If this first line, then M0
	$x^2 + 5x + 4 = 40$ o.e.	E 1	Dependent on M1A1 . Fully established –
	$x^2 + 5x - 36 = 0$	LI	no errors throughout and at least 2 steps,
			one with 40 or 80, after first line
(ii)	-9, 4	B1,B1	If B0, SC1 for +9 and -4
(iii)	$(BC^2 =)$ (their $x + 1)^2 + (their x + 2)^2$	M1	Their <i>x</i> must be positive
	(BC =) 7.81(0)) c.a.o. www2	A1	Ignore any extra solutions
(b) (i)	$9\frac{5}{12}$ or $\frac{108+5}{12}$ or $\frac{9\times12+5}{12}$ or $\frac{565}{60}$	E 1	Must be fractional form
(8) (1)	$9\frac{12}{12}$ or $\frac{12}{12}$ or $\frac{60}{60}$		Condone $113/12 \times 60 = 565$;
			$9 \times 60 + 25 = 565$
	or $\frac{9 \times 60 + 25}{60}$ seen		Not for decimals
(ii)	$\frac{3y+2}{3}$ or $\frac{y+4}{2}$ o.e.	B 1	
	3 2		
	$\frac{2(3y+2)}{(3y+4)} + \frac{3(y+4)}{(3y+4)}$ o.e.	B 1	or $\frac{6y+4}{6} + \frac{3y+12}{6}$ o.e.
	$\frac{2(3y+2)}{6} + \frac{3(y+4)}{6} \text{ o.e.}$ $\frac{2(9y+16)}{12} = \frac{113}{12} \text{ o.e.}$		6 6
(iii)	2(9y+16) 113	M1	o.e. means with common denominator or
(111)	$\frac{12}{12} = \frac{1}{12}$ o.e.	.,,,,	better
	y = 4.5 c.a.o. www2	A1	(Trial and error scores 2 or 0.)
(iv)	(Total dist =) $(3 \times \text{their } y) + 2 + (\text{their } y) + 4$	M1	(= 24)
` /	o.e.		
	(Average speed =) their 24	M1	(dependent) Must be km divided by hours
	(Average speed =) $\frac{\text{their } 24}{9\frac{5}{12}}$ o.e.	1411	o.e. for full method
	2.55 (km/h) (2.548 – 2.549) c.a.o. www 3	A1	Accept fractions in range
	2.5 (MILI) (2.5 15 2.5 15) C.M.O. WWW 5		[15]

Page 5	Mark Scheme: Teachers' version	Syllabus	er er
	IGCSE – May/June 2009	0580, 0581	100

8			Throughout the question ratios score zero.
			If using decimals, 2 s.f. correct answers to
			parts (c) and (d) – penalty of 1 once
			Use of words e.g. 1 in 400 or 1 out of 400,
			Correct answers – penalty of one
			For method marks only accept
			probabilities p and q between 0 and 1
(a)	$p = \frac{1}{20}$, $q = \frac{19}{20}$ o.e.	B1	Could be on diagram
(b) (i)	$\frac{1}{400}$ o.e. c.a.o.	B2	0.0025 allow M1 for (their p) ² o.e.
(ii)	$\frac{38}{400}$ o.e. c.a.o.	B2	0.095 allow M1 for 2 (their p)(their q) o.e.
(c)	$\frac{38}{8000}$ o.e. c.a.o.	B2	0.00475 allow M1 for $2(\text{their } p)^2$ (their $q)$
			o.e.
			including their (ii) \times their p
(d)	their $(b)(i)$ + their (c)	M1	
	$\frac{58}{8000}$ o.e. c.a.o.	A1	0.00725
(e)	their (d) \times 1000 = 7.25 o.e. ft	B1 ft	Accept 7 or 8 or an equivalent integer ft
			[10]

Page 6	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – May/June 2009	0580, 0581	-


9 (a) (i)	174 to 174.25 (cm) c.a.o.	B1	DA.
(ii)	167 (cm) c.a.o.	B1	38
(iii)	12 (cm) c.a.o.	B1	Sei
(iv)	37 c.a.o.	B2	If B0 , B1 for 63 seen in working space
(b) (i)	10, 25	B1	
(ii)	155, 165, 175, 185	M1	s.o.i. allow 1 slip
	(their $10 \times 155 + \text{their } 25 \times 165 + 47 \times 175$	M1	Use of Σfx where the x's are in/on their
	+ 18 × 185)		intervals (allow one more slip) (17 230)
	÷ 100	M1	(dependent on second M) ÷ 100
	172 or 172.3 (cm) c.a.o. www 4	A1	[10]

			<u>, </u>
10 (a) (i)	-2,	B1	
(ii)	26,	B1	
(iii)	$\frac{1}{8}$ o.e.	B1	
(b)	$\frac{y+1}{2}(=x)$	M1	If switch x and y first then M1 for $x = 2y - 1$ or
	$(f^{-1}(x) =) \frac{x+1}{2}$ o.e. www2	A1	If use a diagram/chart then M1 for any evidence of +1 then result ÷ 2
(c)	$z = x^2 + 1$		
	$z - 1 = x^2$	M1	Correct rearrangement at any stage for x or x^2 .
	$(x=)$ $\sqrt{z-1}$ www2	M1	Correct sq root at any stage
			Ignore +, – or \pm in front of $\sqrt{}$
(d)	$(2x-1)^2+1$	M1	
	$= 4x^{2} - 4x + 2 \text{ or } 2(2x^{2} - 2x + 1)$ www 2	A1	Final answer but condone one minor factorising slip if first answer seen
(e)	9	B1	-
(f)	$2(2x-1) + x^2 + 1$ (= 0) or better	B1	
	$(x^{2} + 4x - 1 = 0)$ $(x =) \frac{-4 \pm \sqrt{4^{2} - 4(1)(-1)}}{2 \times 1}$ ft	M1	$\sqrt{4^2 - 4(1)(-1)}$ or better seen
	$(x =) \frac{1 + \sqrt{1 + + } + \sqrt{1 + + } + \sqrt{1 + + + } }}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	M1	If in form $\frac{p + or - \sqrt{q}}{r}$ for -4 and 2×1
	(x =) -4.24, 0.24 c.a.o. www 4 (final answers)	A1,A1	or better Ft their 1, 4 and -1 from quadratic equation seen After A0A0, SC1 for -4.2 or -4.235 or -4.236 and 0.2 or 0.235 or 0.236 The SC1's www imply the M marks
(g) (i)	Straight line with positive gradient and	L1	
(ii)	negative y-intercept		
	U-shape Parabola	C 1	
	vertex on positive y-axis	V1	Dependent [18]

Page 7	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – May/June 2009	0580, 0581	Sp.

11 (a)	15, 21, 28, 36	B2	B1 for 3 correct Any two complete and correct stateme
(b) (i)	10 + 15 = 25, $15 + 21 = 36$ etc	B1	Any two complete and correct statemed
(ii)	Square	B 1	
(c) (i)	2	B1	
(ii)	$\frac{4\times 5}{2} = 10 \text{o.e.}$	E 1	
(iii)	16 290 c.a.o.	B1	
(d) (i)	$\frac{(n+1)(n+2)}{2} \text{ or } \frac{n^2+3n+2}{2} \text{ seen}$	M1	Denominator could be their <i>k</i> May be implied by next line
	$\frac{n(n+1)}{2} + \frac{(n+1)(n+2)}{2}$ or $\frac{n^2+n}{2} + \frac{n^2+3n+2}{2}$	M1	This line must be seen and at least one more step, without any error, to gain the E
	$\frac{(n+1)}{2}(n+n+2) \qquad \frac{2n^2+4n+2}{2}$		mark
	$\frac{(n+1)(2n+2)}{2} \qquad n^2 + 2n + 1 $ $(n+1)^2$		
	$(n+1)^2$		
	$\frac{2}{2(n+1)(n+1)} = (n+1)^2$	E1	Dependent on M1M1 . Fully established – no errors
(ii)	1711 and 1770 final answers c.a.o.	B2	SC1 for 59 or 58 or 1711 or 1770 seen
, ,			[12]

Graph for Question 5

