UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Many, Dapa Cambridge, com MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/21

Paper 21 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		www.xtrapapers.o
Page 2	Mark Scheme: Teachers' version	Syllabus er
	IGCSE – October/November 2009	0581
		·Car

Qu	Answers	Mark	Part Marks
1	(a) 6	1	Part Marks
	(b) 0	1	
2	47, 53	2	B1, B1 independent
3	-0.577 or $\frac{-\sqrt{3}}{3}$ or $\frac{-1}{\sqrt{3}}$	2	B1 numerator 0.5
	$3 \sqrt{3}$		or B1 denominator -0.866 or $\frac{-\sqrt{3}}{2}$
4	1.25 x^4 (or $1\frac{1}{4}x^4$)	2	B1 1.25 B1 x^4
5	161	2	M1 $1.322 \times 10^9 / 8.2 \times 10^8$ (× 100)
6	5	2	M1 $ \mathbf{A} = 0 \times -4 - 1 \times -8$ or better
			or $ \mathbf{B} = 7 \times -5 - 0 \times 1$ or better det symbol can be implied by the working
7		2	B1, B1
8	5 www	2	M1 $(-41)^2 + (8 - 4)^2$ or better
9	x = 0.5 $y = 3$ www	3	M1 consistent \times and $-$ for y or consistent \times and $+$ for x A1 one correct provided M1 scored
10	245	3	M1 $d = kv^2$ A1 $k = 1/20$ or M1 $v^2 = kd$ A1 $k = 20$
11	258 cao	3	M1 18.5 or 24.5 seen M1 $6 \times \text{sum of their two upper bounds}$
12	$-36x^2 + 48x$ or $12x(4 - 3x)$ oe or other partly factorised versions	3	M1 squaring to $"9x^2 - 12x + 4"$ algebraicM1 multiplying by -4termsM1 adding 16only
13	$x \ge 0.8 \text{ or } x \ge \frac{4}{5} \text{ cao}$	3	B1 $12 - 18x$ B1 $-4 + 8x$ these terms may be reversed if moved to the other side of the inequality allow >=
14	\$11.50	3	M1 $198 \times r^3$ r can be anything dep M1 r = 1.019 and subtracting 198 SC2 209.50 on answer line

	Page 3 Mark Scheme:		hers' version	Syllabus Syllabus	
		IGCSE – October/No		0581 202	
5	(a) (i) OQ (ii) RM or MP	1	Allow ½ RP	Syllabus 0581 0581	
	(b) $S \times$	7		position wrt each direction of	
6	(a) (0)810 or 8:10	etc. 1			
	(b) 4	2	M1 $(3+3)/(1+0)$).5)	
	(c) 265	1			
17	(a) 261.48 cao	2	M1 4000 / 15.297	'8	
	(b) (±)3.86(48)	or 3.865 2		5.2978)/15.9128 (× 100) 0/15.9128) / "261.48"	
8	m = 2 $c = -8$	4	B1 $m = 2$	B1 $B(4, 0)$ or $A(-2, 0)$ seen or used B1 $m = 2$ M1 substituting (4, 0) into $y = 2x + c$ or $\frac{0-c}{4-0} = 2$	
9	(a) 44	2	M1 <i>OCB</i> = 68		
	(b) 158	2			
20	(a) 38	1			
	(b) 45 to 46	1			
	(c) 15 to 16	1			
	(d) 10 or 11	2	SC1 70 on answe	er line	
21	(a) 0.8 or 4/5 cao	2	M1 speed/time		
	(b) 960 www	3	$ \begin{array}{r} \mathbf{M1} & 30 \times (12 + 36) \\ \mathbf{M1} & 10 \times (12 + 36) \\ \end{array} $		

Page 4	Mark Scheme: Teac IGCSE – October/No		Syllabus 0581 Syllabus 0581 Syllabus 0581 Syllabus SyllaS
22 (a) 2	2	M1 f(0) = 1	enterio
(b) $4x^3 +$	2	M1 $4(x^3 + 1) + 1$.9e.co
(c) $\frac{(3x-2)}{2}$	2		(2x + 1)/3 to make x the subject and y. Allow any one error in the
	70		