UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

0581 MATHEMATICS

0581/22

Paper 22 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – October/November 2009	0581	5

Qu	Answers	Mark	Part Marks
1	(a) 6	1	Part Marks Total T
	(b) 0	1	
2	37, 41	2	B1, B1 independent
3	$-0.577 \text{ or } \frac{-\sqrt{3}}{3} \text{ or } \frac{-1}{\sqrt{3}}$	2	B1 numerator 0.5 oe or B1 denominator -0.866 or $\frac{-\sqrt{3}}{2}$
4	$1.25 x^4 \text{ (or } 1\frac{1}{4}x^4)$	2	B1 1.25 B1 x ⁴
5	139	2	M1 $1.322 \times 10^9 / 9.5 \times 10^8 \ (\times 100)$
6	8	2	M1 $ \mathbf{A} = 0 \times 12 - 1 \times -4$ or better or $ \mathbf{B} = 3 \times -4 - 0 \times 4$ or better det symbol can be implied by the working
7		2	B1, B1
8	10 www	2	M1 $(-28)^2 + (10 - 2)^2$ or better
9	x = 0.5 $y = 3$ www	3	M1 consistent × and – for y or consistent × and + for x A1 one correct provided M1 scored
10	128	3	M1 $d = kv^2$ A1 $k = 2/25$ (= 0.08) or M1 $v^2 = kd$ A1 $k = 12.5$
11	198 cao	3	M1 12.5 and 20.5 seen M1 6 × sum of their two upper bounds
12	$-36x^2 + 48x$ or $12x(4 - 3x)$ oe or other partly factorised versions	3	M1 squaring to " $9x^2-12x+4$ " algebraic M1 multiplying by -4 terms M1 adding 16 only
13	$x \ge 0.8$ or $x \ge 4/5$ cao	3	B1 $12 - 18x$ B1 $-4 + 8x$ these terms may be reversed if moved to the other side of the inequality allow >=
14	\$12.92	3	M1 $249 \times r^3$ r can be anything dep M1 r = 1.017 and subtracting 249 SC2 261.92 on answer line

Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2009	0581
		S

15	(a) (i) OQ	1	and
	(ii) RM or MP	1	Allow ½RP
	(b) S×	2	B1, B1 correct position wrt each direction of the vector ± 1 mm
16	(a) (0)810 or 8:10 etc.	1	
	(b) 4	2	M1 (3 + 3)/(1 + 0.5)
	(c) 265	1	
17	(a) 261.48 cao	2	M1 4000 / 15.2978
	(b) (±)3.86(48) or 3.865	2	M1 (15.9128 – 15.2978)/15.9128 (×100) oe or ("261.48" – 4000/15.9128) / "261.48"
18	m = 2 $c = -10$	4	B1 $B(5, 0)$ or $A(-4, 0)$ seen or used B1 $m = 2$
			M1 substituting (5,0) into $y = 2x + c$ or $\frac{0-c}{5-0} = 2$
19	(a) 44	2	M1 $OCB = 68$
	(b) 158	2	
20	(a) 38	1	
	(b) 45 to 46	1	
	(c) 15 to 16	1	
	(d) 10 or 11	2	SC1 70 on answer line
21	(a) 0.8 or 4/5 cao	2	M1 speed/time
	(b) 960 www	3	M1 $30 \times (12 + 36)/2$ M1 12×40 M1 $10 \times (12 + 36)/2$ M1 $\frac{1}{2} \times 40 \times 24$

Page 4	Mark Scheme: Teachers' version	Syllabus	2 er
	IGCSE – October/November 2009	0581	100

22	(a) 2	2	$\mathbf{M1} \ \mathbf{f}(0) = 1$
	(b) $4x^3 + 5$	2	M1 $4(x^3 + 1) + 1$
	(c) $\frac{(3x-1)}{2}$	2	M1 rearranging $y = (2x + 1)/3$ to make x the subject and interchanging x and y . Allow any one error in the working
		70	