UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Wany, Dana Cambridge, com MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/03

Paper 3 (Core), maximum raw mark 104

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

WAAAAA	vtran	apers	com
VU VV VV	nuap	apers	COIII

Page 2	Mark Scheme: Teache IGCSE – October/Nov		Syllabus Pr 0581 0581 Notes 0.2 or 20% Accept 0.2 or 40% 0.4 or 40%
Qn	Answers	Mark	Notes Photos
(a) (i)	1/5	1	Accept 0.2 or 20%
(ii)	2/5	1	Accept 0.4 or 40 <u>%</u>
(iii)	0	1	Accept 0/5 or 0 <u>%</u>
(b) (i)	6	1	cao
(ii)	1	1	сао
(iii)	2.6 (0) www	3	M1 for $1 \times 8 + 2 \times 4 + 3 \times 5 + 4 \times$ their (b) (i) $+ 5 \times 2$ M1 dep for $\div 25$ or their 25
(iv)	heights 8, 4, 5, , 2 6 or ft height for their (b) (i)	2 1 ft	SC1 for one error, or small gaps
(a) (i)	15.7 art	2	M1 for $2 \times \pi \times 2.5$
(ii)	19.6 art	2	M1 for $\pi \times 2.5^2$

(ii)	19.6 art	2	M1 for $\pi \times 2.5^2$
(iii)	14.6 art	2	M1 for $\pi \times (2.5 + 0.8)^2$
(b)	Within range 7840 to 7860	2 ft	M1 for their (a) (ii) × 0.4 × 1000
(c)	31	3 ft	M1 for their (b) ÷ 250 soi A1 ft for 31.4 art W1 for their answer correctly rounded
3 (a) (i)	4.5	2	M1 for $15 \times 3 / (7+3)$
(ii)	3	1 ft	Their (a) (i) ÷ 2 and rounded up
(b) (i)	8.14	3	M1 for 100 – 12 soi M1 for 9.25 × their 88 / 100
(ii)	32.56	1 ft	4 × their (b) (i)
(iii)	46.25	1	cao
(iv)	8.75(6) or 8.76	3	M1 for (their (ii) + their (iii)) soi 2^{nd} M1 dep for $\div (4 + 5)$ soi

1.			
www	/ xtrap	apers.c	com
2		•	

	Page 3	Mark Scheme: Teachers' v	version	Syllabus 7.0 er
	- 	IGCSE – October/Novemb		0581 202
				Č2
4	(a) (i)	Isosceles	1	Condone spelling
	(ii)	DNC	1	Condone order of letters
	(iii)	70°	1	Syllabus 0581 Condone spelling Condone order of letters cao
	(b) (i)	49.4° or 49°24' art	2	M1for inv tan (7/6)
	(ii)	9.22 art	2	M1 for $\sqrt{6^2 + 7^2}$ soi (e.g. $\sqrt{85}$)
	(c)	12.2 art	3	M2 for 7/sin35
	(d)	42.8(4) or 42.85	2 ft	M1 for $2 \times [\text{their (b) (ii)} + \text{their (c)}]$ oe
5	(a)	2 -6 2	1, 1, 1	
	(b)	seven points correctly plotted smooth correct curve through 7 correct points	P3ft C1	5 or 6 P2ft, 3 or 4 P1ft
	(c) (i)	(-2, -7)	1	сао
	(ii)	-4.6 to -4.75 and 0.6 to 0.75	1 1	cao cao
	(d) (i)	correct point marked	1	Condone lack of label
	(ii)	<u>ruled</u> line from their A to their $(0, -3)$	1	Continuous line of this minimum length
	(iii)	-4/2 oe	2	M1 for attempt at gradient or SC1 for 2 oe or -1 oe from correct line
	(iv)	y = -2x - 3 oe	2	SC1 for $y = kx - 3$ oe or $y = -2x + k$ oe or $y =$ their (d) (iii) $x + k$ oe

	Page 4 Mark Scheme: Teachers' version IGCSE – October/Novembe			rsion Syllabus A er 2009 0581 Page	
6	(a)	<i>x</i> + 4	1	ambrid	
	(b)	3 <i>x</i>	1	Syllabus 0581 Brancanhurida Br	
	(c) (i)	x + x + 4 + 3x 5x + 4	M1 ft A1 cao	soi ft is $x + (a) + (b)$ 5x + 4 www scores both marks	
	(ii)	Their c (i) \div 3 = 28 or their c (i) = 28 × 3	1		
	(iii)	(x =) 16	2	M1 for $5x = 84 - 4$ or $5x = 80$ or $x = 80/5$	
	(d)	48 or $3 \times \text{their } x$	1 ft	Ft is 3 x (c) (iii)	
	(e)	84%	2	M1 for $63 / 75 \times 100$	
7	(a)	4	1	cao	
	(b)	4 correct lines drawn, accept reasonable freehand	2	SC1 for 2 correct lines	
	(c)	2600	3	M1 for 2800 × 1.75 or 4900 M1 for their 4900 – 2300	
	(d)	3100.40	2	M1 for 2300 × 1.348	
	(e)	5962.32	3	M2 for $5000 \times (1.092)^2$ SC1 for $5000 \times (1.92)^2$ or full equiv. or 18432	

Page 5	Mark Scheme: Teachers' v IGCSE – October/Novembe		Syllabus Apper 0581
(a) (i)	Correct X	2	SC1 for translation of $\begin{pmatrix} 2 \\ -7 \end{pmatrix}$
(ii)	Correct Y	2	SyllabusSyllabuser0581erSC1 for translation of $\begin{pmatrix} 2\\ -7 \end{pmatrix}$ SC1 for rotation through 90 clockwise Or 90 anticlockwise about any point
(b) (i)	Correct Z ₁	2	SC1 for reflection in <i>y</i> axis Or in any horizontal line
(ii)	Correct Z ₂	2 ft	strict ft reflection of their Z_1 if possible SC1 for reflection in $y = 4$ or any vertical line
(iii)	Translation, $\begin{pmatrix} 8\\4 \end{pmatrix}$ OR Rotation, through 180 about (4, 0)	1,1	W1 transformation, W1 full description SC2 for Enlargement sf = $-1 \cos (4, 0)$
(a)	13 21 10 15	1 1 1 1	cao cao
(b)	43 28	1 1	cao cao
(c) (i)	$\frac{1}{2} \times 5 \times 6$ = 15 seen	1 1dep	accept $\frac{1}{2} \times 5 \times (5+1)$
(ii)	$\frac{1}{2} \times 20 \times 21$ = 210	1 1	accept $\frac{1}{2} \times 20 \times (20 + 1)$ accept 210 www for both marks
(ii)			

2

M1 for $7 = 3^2 + k \times 3 + 1$ oe

(k =) −1

(d)