

Www.strapapers.com MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/43

Paper 43 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus of er
	IGCSE – May/June 2010	0581 23
bbreviations		"PHA
o correct a	nswer only	24
o correct se	olution only	30
p depender	t	-6
follow th	rough after error	
v ignore su	bsequent working	
or equiva	lent	
Special C	ase	
ww without w	vrong working	

Qu.	Answers	Mark	Part Marks
1 (a) (i)	2:3	1	
(ii)	$30 \div 2 \times 3$ o.e.	E1	Allow 2 : 3 (oe) = 30 : 45
(iii)	60	2	M1 for $3 \div 5 \times 100$ oe
(b)	31.83	3	SC2 for 31.827 as final answer or not spoiled. or M1 for \times 1.03 twice oe
(c)	1.5	2	M1 for $\frac{30 \times r \times 5}{100} = 2.25$ oe or for 2.25 ÷ 5 then ÷ 30 × 100
2 (a)	5.83 (5.830 to 5.831)	2	M1 for $3^2 + 5^2$ Any other method must be complete
(b)	113. 6 (114 or 113.5 to 113.6) www 4	4	M2 for (cos <i>C</i>) = $\frac{5^2 + 8^2 - 11^2}{2 \times 5 \times 8}$ or M1 for correct implicit expression A2 (A1 for -0.4 or $-\frac{2}{5}$)
(c)	25.8 (25.77 to 25.85) cao www 3	3	M1 for $0.5 \times 5 \times 8 \times \sin$ (their angle <i>C</i>) o.e must be full method e.g. Hero's formula. M1 for $0.5 \times 3 \times 5$ oe

www.xtrapapers.com

Page 3			Mark Scheme: Teac	version Syllabus to er	
IGCSE – May/Ju		une 201	10 0581 23		
					Con 1
3					Throughout this question isw any can or changing to other forms, after correct answer seen. Do not accept ratio or worded forms.
(a)	0.4, 0.	1 oe		1	
(b) (i)	1			1	
(ii)	0.7	oe	ft	1 ft	ft their first three probabilities
(c) (i)	0.04	oe		1	
(ii)	0.03	oe	ft	2ft	M1 for their 0.1×0.3
(iii)	0.12	oe	ft	3ft	ft their 0.1, their 0.4 and their (c)(i) M2 for their $0.4 \times$ their $0.1 +$ their $0.1 \times$ their $0.4 + 0.2 \times 0.2$ (or their (c)(i)) or M1 for any two of these products added or two of each
(d)	0.147	oe	ft	2ft	ft their (b)(ii). M1 for their 0.7 × their 0.7 × (1 – their 0.7)
4 (a)	Triang (10, 10	le drav), (10,	vn , vertices (6, 10), 8)	2	SC1 reflects correctly in $x = 6$
(b)	Triang (6, 10)	le drav	vn , vertices (2, 8), (6, 8),	2	SC1 for translation $\begin{pmatrix} -4\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ 6 \end{pmatrix}$
(c)	Transl	ation		2	B1 All part marks spoiled if extra transformation
	$\begin{pmatrix} 4 \\ -6 \end{pmatrix}$	o.e.			B1 Indep. Allow other clear forms or words
(d) (i)	Enlarg	ement		3	B1 All part marks spoiled if extra
	(centre (factor	e) (4, 6) 0.5)		transformation B1 Indep. B1 Indep.
(ii)	$\frac{1}{4}$ or	0.25 c	e	1	
(e) (i)	Stretch	1		3	B1 All part marks spoiled if extra transformation
	y-axis (factor	o.e inv) 0.5	rariant		B1 Indep B1 Indep
(ii)	$ \begin{pmatrix} 0.5\\ 0 \end{pmatrix} $	$\begin{pmatrix} 0\\1 \end{pmatrix}$ f	ì	2 ft	ft their factor in (e)(i) only if stretch SC1 (also ft) for left-hand column

www.xtrapapers.com

Page 4		Mark Scheme: Teachers' version			Syllabus Syllabus
		IGCSE – May/June 2010		0581 730	
5 (a) (i)	Simila	r	1	Accept enlarge	ment Phys
	27		2	M1 for $\frac{PQ}{PQ} = \frac{PQ}{PQ}$	$\frac{3}{100}$
(11)	2.7		2	3.6	4
(iii)	3.15		2	M1 for $\left(\frac{3}{4}\right)^2$	or $\left(\frac{4}{3}\right)^2$ o.e seen
				If $\frac{1}{2}ab\sin C$ u	sed or base and height used then
				must be full me	ethod for M1
(b) (i)	29		1		
(ii)	61 ft		1 ft	ft 90 – their (i)	if (i) is acute
(iii)	61 ft		1 ft	ft their (ii) if th	eir (ii) is acute, but can recover
(iv)	119 ft		1 ft	ft 180 – their (i	iii)
(c) (i)	20		1		
(ii)	110		3	M1 for adding	6 angles going up 4 each time
				and M1 (indep) for (6A + 60 = 720)	720 seen and not spoiled o.e. scores M2)
6 (a)	-2.5, -	2, 2, 2.5	2	B1 for 3 correc	t
(b)	4 point Correc points Two by not tou	ts correct ft t shape curve through at least 9 over full domain ranches either side of <i>y</i> -axis and the provide the side of <i>y</i> -axis and the provide the side of <i>y</i> -axis and the provide the side of the provide the side of the provide the provided the p	P1 ft C1 ft B1	ft only if corre- outside domair Independent	ct shape and isw any curve n (including crossing <i>y</i> -axis)
(c)	-1, 0, 1	1	2	B1 for two cor	rect, each extra –1
(d)	(<i>x</i>) < –	1 and $(x) > 1$ as final answer	2	B1 B1 Condon words, condon limits. $1 < x <$ -1 < x < 1 sco than two answe	e inclusive inequality, allow in e inclusion of -4 and $+4$ as -1 or $-1 > x > 1$ SC1 pres 0 . Each extra -1 if more ers.
(e) (i)	Correc (1, 3)	t ruled line though $(-2, -3)$ to	2	SC1 for ruled 1 from $x = -2$ to good freehand	ine gradient 2 or <i>y</i> -intercept 1 1 or correct line but short or full line.
(ii)	Some i for bot	easonable indication on graph h points	1	e.g. points of in drawn from po	ntersection marked, or, lines int of intersection to x-axis etc
(iii)	$x^2 + 1 =$	$= 2x^2 + x$ oe then $x^2 + x - 1 = 0$	3	E2 Must be int no errors or on	ermediate step before answer – nissions
	or $\frac{1}{x} = x + 1$ then $1 = x^2 + x$			or E1 Either no or omission.	o intermediate step or one error
	1. –1			B1	
L	-, 1				

www.xtrapapers.com

Page 5		Mark Scheme: Teachers' version			Syllabus er
		IGCSE – May/June 2010			0581
					2
7 (a)	(Mode) = 11 (Median) = 12.5 (Mean) = 12.8 (0)		1 2	B1 M1 for evidence $(126 + 1)$	ce of finding mid-value
			3	M1 for correct M1 (dependent	use of Σfx (allow one slip) t) for $\div 126$
(b) (i)	15, 27, 30,		3	B1 B1 B1	
(ii)	9.67 (9.674 to 9.675) cao www 4		4	M1 for mid-val M1 for use of Σ intervals and th M1 (dependent their Σf) isw any conver	lues, condone one error or slip $\Sigma f x$, with x's anywhere in heir frequencies (allow one slip) t on second M) for \div 126 (or resion into hours and minutes
8 (a)	$40 \div 10$ and $12 \div 6$ (or $12 \div 3$) and $6 \div 3$ (or $6 \div 6$) oe $4 \times 2 \times 2 = 16$ reducing (seen) to 16		E2	M1 Allow draw reaching 16 for Reaching 16 w SC1 for $\frac{40 \times 12}{\text{their}}$ or $4 \times 2 \times 2 = 1$ other working	wing for M1 but must see E2 ithout any errors or omissions $\frac{2 \times 6}{(b)}$ even if = 16 16 or $4 \times 4 \times 1 = 16$ without
(b)	180		1		
(c) (i)	23 640	(allow 23 600)	2	M1 for their 18	$80 \times 8 \times 16 + 600$
(ii)	23.64 ((or 23.6) ft	1 ft	ft their (i) ÷ 10	00
(d) (i)	216		2	M1 for (10 × 6	$(+10 \times 3 + 6 \times 3) \times 2$ oe
(ii)	8.64		3	M1 for their (i) M1(indep) for Figs 864 imply	$1 \times 16 \times 25$ 2×100^2 100^2 M1 only
(e)	75.3 (75.26 to 75.33)		3	M1 for $\frac{4}{3}\pi \times 0$ 104.7 then M1 (dep) $\frac{4}{3}\pi \times 0.5^3$ mus	$.5^{3}$ (0.5235) Implied also by for their (b) – 200 × their t be giving positive answer
(f)	0.842 ((0.8419 – 0.8421)	3	M1 for $(\frac{4}{3}\pi r^3)$ then M1 for $\frac{5}{3}$	$ b) = 50 \div 20 \frac{0 \div 20}{\frac{4}{3}\pi} $ (0.5966 to 0.5972)
				After 0 scored §	SC1 for $\sqrt[3]{\frac{50}{\frac{4}{3}\pi}}$ (implied by 2.29)

Page 6	Mark Schomo: Topphore' version	Syllabur 4.0 or
raye o		Syliabus

			24
9 (a)	8w + 2j = 12 12w + 18i = 45	5	B1 condone consistent use of other varia
	Correctly eliminating one variable		M1 allow one numerical slip
	Water 1.05, Juice 1.8(0)		A1 A1 If A0, SC1 for 1.80, 1.05
(b) (i)	$\frac{2}{y} + \frac{4}{y-4} = \frac{40}{60}$ oe	M2	M2 If M0, SC1 for $\frac{2}{y}$ or $\frac{4}{y-4}$
	$\frac{2 \times 3(y-4)}{3y(y-4)} + \frac{3 \times 4y}{3y(y-4)} = \frac{2y(y-4)}{3y(y-4)}$ oe or better $\frac{6(y-4) + 12y}{2y^2 - 8y} = \frac{2y(y-4)}{3y(y-4)}$ oe $\frac{6y-24 + 12y}{2y^2 - 8y} = \frac{2y(y-4)}{3y(y-4)}$ oe $\frac{6y-24 + 12y}{2y^2 - 8y} = \frac{2y(y-4)}{3y(y-4)}$	E2	E2 Correct conclusion reached without any errors or omissions including at least 3 intermediate steps. or E1 if any one slip, error or omission that is recovered or correct with only two steps.
(ii)	(y-1)(y-12)	2	SC1 for $(y + a)(y + b)$ where $ab = 12$ or $a + b = -13$
(iii)	1, 12 ft	1 ft	Only ft SC1 but can recover to correct answer with new working or if (ii) not attempted
(iv)	8 ft	1 ft	ft a positive root –4 if positive answer
(c)	$\frac{-(-1)\pm\sqrt{(-1)^2-4(1)(-4)}}{2(1)}$	2	B1 for $\sqrt{(-1)^2 - 4(1)(-4)}$ or better
			then B1 for $-(-1)$ and $2(1)$ or better Brackets and full line may be implied later
	-1.56, 2.56	2	B1 B1 If B0, SC1 for -1.6 or -1.562 to -1.561 and 2.6 or 2.561 to 2.562
10 (a)	Dots all correctly placed in Diagram 4	1	
. /			
(b)	Column 4 16, 25, 16, 41 Column 5 25, 41, 20, 61 Column <i>n</i> : n^2 , 4 <i>n</i> , $n^2 + (n+1)^2$ oe	7	B2 or B1 for three correct B2 or B1 for three correct B1 B1 B1 oe likely to be $(n-1)^2 + n^2 + 4n$ or $2n^2 + 2n + 1$ After any correct answer for column <i>n</i> , apply isw
(c)(i)	79.601 cao	1	
	000 A	1	Station And Lincom and station and the
(11)	800 II	110	it their 4 <i>n</i> linear expression only
(d)	12 cao	1	
(u)	12 040	1	