UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0581 MATHEMATICS

0581/13

Paper 1 (Core), maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	3
		IGCSE – October/November 2010	0581	No.
Abbr	eviations			Carry
cao	correct answ	er only		CA.
cso	correct soluti	on only		Sec
dep	dependent			, co
ft	follow throug	gh after error		On
isw	ignore subsec	quent working		
oe	or equivalent			

Abbreviations

follow through after error ignore subsequent working or equivalent ft isw

oe Special Case SC

without wrong working www

Qu.	Answers	Mark	Part Marks
1	Pyramid	1	
2	1, 4, 25, 100	2	B1 for any two and none incorrect. -1 each incorrect
3	(a) 2	1	
	(b) 2	1	
4	(a) 41 or -41	1	
	(b) -7	1	
5	$2x^2 + xy$ final answer	2	B1 for $2x^2$ or xy seen in working
6	5.5	2	M1 for $2x + 1 = 3 \times 4$ or better or $\frac{2x}{3} = 4 - \frac{1}{3}$
7	6.489	2	B1 for 6.5 or 6.49 or 6.4891
8	35	2	M1 for $45 \div (7 + 2)$ SC1 for answer = 10
9	46.4	2	M1 for 32 × 1.45 oe or B1 for answer of 14.4
10	$\frac{3}{16}$	2	B1 for $\frac{1875}{10000}$ or any equivalent fraction.
11	3a(c-2d)	2	B1 for $a(3c - 6d)$ or $3(ac - 2ad)$ or $3a(jc - kd)$ where j and k are non-zero.
12	<u>8</u> 27	2	M1 for $1 \div (1\frac{1}{2})^3$ oe or SC1 for $\frac{27}{8}$
13	(x =) 2, (y =) -1	2	M1 for correct method for eliminating one variable. Subtract or multiply by 3 and 5, then subtract

D 0	M 101 T 1 1	- O !! !
Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0581

T	1	6
(a) 17	1	MAL
(b) $\sqrt{17}$ or $4.12()$	1	andridge.
(c) 0.294	1	
212.18 final answer cao	3	M2 for 200×1.03^2 oe or M1 for $(200 \times 1.03) \times 0.03$ oe
(a) 90	1	
(b) 45	1ft	ft $\frac{1}{2}$ (180 – their (a))
(c) 45	1ft	ft 90 – their (b)
(a) $(7+2) \times 9$	1	
(b) $36 \div (6 \div 2) = 12$	1	
(c) $5 \times (3+6) \times 2 = 90$	1	
(a) (i) $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$	1	
(ii) $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$	1	
(b) $(AC) + (CB) = (AB)$	1	
$(y=)-\frac{1}{2}x+2$ cao	3	B1 for gradient of $\pm \frac{1}{3}$ oe
3		(Allow ± 0.33 or better) B1 ind for $mx + 2$ where $m \neq 0$.
(a) (i) 4	1	
(ii) $\frac{4}{5}$ oe	1	
(iii) $\frac{2}{5}$ oe	1	
(b) $\frac{2}{4}$ oe	1	
(Mode =) 0 (Median =) 2	1 1 2	M1 (0+0+0) + 1 + 2 + 2 + 4 + 4 + 5 + 9
	(b) $\sqrt{17}$ or $4.12()$ (c) 0.294 212.18 final answer cao (a) 90 (b) 45 (c) 45 (a) $(7+2) \times 9$ (b) $36 \div (6 \div 2) = 12$ (c) $5 \times (3+6) \times 2 = 90$ (a) (i) $\binom{4}{5}$ (ii) $\binom{2}{-2}$ (b) $(AC) + (CB) = (AB)$ (y=) $-\frac{1}{3}x + 2$ cao (a) (i) 4 (ii) $\frac{4}{5}$ oe (iii) $\frac{2}{5}$ oe (b) $\frac{2}{4}$ oe (Mode =) 0	(b) $\sqrt{17}$ or $4.12()$ (c) 0.294 212.18 final answer cao 3 (a) 90 1 (b) 45 1ft (c) 45 1ft (a) $(7+2) \times 9$ 1 (b) $36 \div (6 \div 2) = 12$ 1 (c) $5 \times (3+6) \times 2 = 90$ 1 (b) (45) 1 (i) $(\frac{2}{5})$ 1 (ii) $(\frac{2}{-2})$ 1 (b) $(AC) + (CB) = (AB)$ 1 (v) $(-\frac{1}{3}x + 2 \text{ cao})$ 3 (a) (i) 4 (ii) $\frac{4}{5}$ oe 1 (b) $\frac{2}{4}$ oe 1 (Mode =) 0 (Median =) 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Page 4	Mark Scheme: Teachers' version	Syllabus	.0	V
	IGCSE – October/November 2010	0581	100	

22	(a) Lines connecting (08 00, home) to	3	B1 home to shop
	(08 10, shop)		B1 home to shop
	(their 08 10, shop) to (their 08 15, shop)		B1 ft horizontal and 5 minute period
	(their 08 15, shop) to (08 30, school)		B1 ft for line to 08 30 and school
	(b) 1.65	2	M1 for use of speed × time SC1 for 1.375 or 1.376 to 1.38