www.xtrapapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0581 MATHEMATICS

0581/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus
		IGCSE – October/November 2010	0581
Abbr	eviations		Carly
cao	correct answe	er only	Moridge
cso	correct solution	on only	90
dep	dependent		Sign
ft	follow throug	h after error	- Ox
isw	ignore subseq	uent working	
oe	or equivalent		
SC	Special Case		•

Abbreviations

oe Special Case SC

without wrong working www

Qu.	Answers		Part Marks	
1	(a) 5	1		
	(b) 0	1		
2	10	2	M1 33 – 25 or 38 – 30	M1 30 – 15 – 5 oe with no further working
3	$m = \frac{J}{v - u}$	2	M1 $m(v-u)$ seen	
4	(a) 40	1		
	(b) 65	1		
5	23.6	2	$1 \text{ M1} \sin R = 20/50 \text{ or } -$	$\frac{20}{\ln R} = \frac{50}{\sin 90}$
6	(a) 6.58×10^{-3}	1	× and 10 essential	
	(b) 0.00 <u>66</u> cao	1	Allow 6.6×10^{-3}	
7	$t = 2\frac{1}{2}$	2	M1 (b) $t = (\mathbf{b})(3t - 5)$	
8	Answer given so only working scores marks	2	M1 7/27 + 48/27 or 7/2 M1 completely correct	
9	2390 2410	2	M1 119.5 and 120.5 or B1 for one correct a	nswer
10	60	3	B1 540 used M1 [their 540 – 3 × 14	40]/2
11	128	3	$\mathbf{M1} \ R = kv^2$ $\mathbf{A1} \ k = \frac{1}{2}$	
12	$\frac{x-7}{(x-1)(x+2)}$	3	M1 $3(x-1)-2(x+2)$ B1 denominator correct A1 all correct	

Page 3	Mark Scheme: Teachers' version	Syllabus	.0	<u>r</u>
	IGCSE – October/November 2010	0581	100	

		Г	8
13	245 or 246	3	M1 $\pi \times 5^2$ M1 18^2 – their $k\pi$
14		3	M1 $\pi \times 5^2$ M1 18^2 – their $k\pi$ M1 2 lines correct length M1 2 compass arcs correct length A1 complete accurate drawing with all lines and arcs solid
15	36 cao	3	M1 1900/2.448 (= 776.14) A1 "776.(14)" – 740 (= 36.14)
16	(a) $\frac{4}{9}x^8$	2	B1 $\frac{4}{9}$ B1 x^8
	(b) $2y^{-1}$	2	B1 2 B1 y^{-1}
17	Boys Girls Total Asia 62 28 90 Europe 35 45 80 Africa 68 17 85 Total 165 90 255	3	B1 two or three correct or B2 four or five correct
	(b) $\frac{3}{17}$ or 0.176(47)	1	Allow $\frac{45}{255}$, $\frac{15}{85}$, $\frac{9}{51}$
18	(a) $\begin{pmatrix} -14 & 0 \\ 0 & -14 \end{pmatrix}$	2	B1 two or three correct answers
	(b) -14	1	
	$ \begin{array}{c c} \mathbf{(c)} & \begin{pmatrix} -5 & 4 \\ 5 & -4 \end{pmatrix} $	2	B1 two or three terms correct
19	(a) 14.1	2	$M1 (BD^2) = 10^2 + 10^2 \text{ or } \sin 45 = 10/CD$
	(b) 3.74 or 3.78	3	M1 (a)/2 M1 (their (a)/2) ² + PM ² = 8 ²
20	(a) R	4	B1 $y = 2$ single line thro B1 (6, 0) and B1 (0,6) B1 $y = 2x$
	(b)	1	Correct R cao

Page 4	Mark Scheme: Teachers' version	Syllabus	V
	IGCSE – October/November 2010	0581	8-

			3
21	(a) 2	1	STABLE.
	(b) 6.7 to 7.3	1	a de la companya de l
	(c) 203	3	M1 intention to find area under the graph M1 $\frac{1}{2} \times 7 \times 14 + 9 \times 14 + \frac{1}{2} \times 4 \times 14$ oe
22	(a) (0,7)	1	
	(b) (i) $y = 2x + 3$ (ii) $(1, 4)$	2 3	B1 $y = 2x + c$, $c \ne 7$ or B1 $y = kx + 3$, $k \ne 0$ B1 $y = 5$ M1 $\left(\frac{0+2}{2}, \frac{3+"5"}{2}\right)$ A1 (1, ft4)