UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

WANN, PapaCambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0581
bbreviations		
o correct an	swer only	
o correct so	ution only	
lep dependent		
	bugh after error	
	sequent working	
be or equival	1 0	
C Special Ca		
-	rong working	
	ounding to	
soi seen or in	•	

Б

Qu.	Answers	Mark	Part Marks
1	(a) (i) 1088 (ii) Their 1088 × 2 and (3136 – their 1088) × 4.5 2176 + 9216	2 M1 E1	M1 for 3136 ÷ (17 + 32) soi by 64 or 2048 2048 may be 32 × 64
	(b) 11.9 to 11.9031 www	3	M2 for $\frac{(12748 - 11392) \times 100}{11392}$ oe or M1 for $\frac{12748 - 11392}{11392}$ soi by 0.1119 or $\frac{12748}{11392}$ (×100) soi by 111.9 or 112 or 1.119
	(c) 8900	3	M2 for $11392 \div 1.28$ oe or M1 for $11392 = 128(\%)$ oe
2	(a) (i) Correct reflection (1, -1) (4, -1) (4, -3) (ii) Correct rotation (-1, 1) (-1, 4) (-3, 4) (iii) Reflection only y = x oe or $y = -x$ oe	2 2 1dep 1	 SC1 for reflection in <i>y</i>-axis or vertices only of correct triangle SC1 for rotation 90 clockwise about O or vertices only of correct triangle Two transformations scores 0 Dependent on at least SC1 scored in both (i) and (ii) Only from 2 and 2 or SC1 and SC1 scored Only from 2 and SC1 or SC1 and 2 scored
	(b) (i) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ oe (ii) Rotation, 90° clockwise, origin oe	2 2	 B1 for either column correct or determinant = 1 B1 for rotation and origin B1 for 90° clockwise oe

 Page 3
 Mark Scheme: Teachers' version
 Syllabus

 IGCSE – October/November 2010
 0581

			74
3	(a) $72 - 2x$ oe seen $x (72 - 2x) = 72x - 2x^2$	M1 E1	No errors or omissions isw solutions B1 for answers $2(36x - x^2)$ or $x(72 - 2x)$
	(b) $2x(36 - x)$ or $-2x(x - 36)$	2	isw solutions B1 for answers $2(36x - x^2)$ or $x(72 - 2x)$ or correct answer spoiled by incorrect simplification
	(c) 630, 640, 70	3	B1 for each correct value
	(d) 8 correct plots	P3ft C1	ft for their values ft P2 for 6 or 7 correct plots ft P1 for 4 or 5 correct plots Curve of correct shape through minimum of 7 of their points No ruled sections
	(e) (i) 7.5 to 8.5 27.5 to 28.5 (ii) 641 to 660	2 1	B1 for either value correct
	(f) 41	2	M1 for 500 ÷ 12 soi by 41.6 to 42
4	(a) $1.5^2 + 2^2$ (l =) 2.5 $\pi \times 1.5 \times$ their 2.5 $2 \times \pi \times 1.5 \times 4$ Addition of their areas for cone and cylinder 49.45 to 49.5	M1 A1 M1 M1 M1 A1	soi by 6.25 May be on diagram Their $2.5 \neq 2$ soi by 11.77 to 11.8 or 3.75π soi by 37.68 to 37.715 or 12π soi by 15.75 π This M mark is lost if any circles are added www 6
	(b) (i) $\pi \times 1.5^2 \times 4$	M1	soi by 28.26 to 28.3 or 9π
	$\frac{1}{3}\pi \times 1.5^{2} \times 2$ Addition of their volumes 32.9(7) to 32.99 (ii) 84(.0) to 84.1 www	M1 M1 E1 3	soi by 4.71 to 4.72 or 1.5π 10.5 π implies M3 M1 for $\frac{1}{2}\pi \times 0.5^2$ soi by 0.392 to 0.393 or $\pi/8$ and M1 for their 33 ÷ ($\frac{1}{2}\pi \times 0.5^2$) soi by 264/ π or SC1 for 42 to 42.1 as answer
	(c) (i) 33000 (ii) 18min 20s cao	1 2	M1 for their $33000 \div 1800$ soi by $18.3(3)$ or correct in mins and secs for their 33000

		www.xtrapapers
Page 4	Mark Scheme: Teachers' version	Syllabus r
	IGCSE – October/November 2010	0581

				74
5	(a) 8 correct p		Р3	P2 for 6 or 7 correct plots P1 for 4 or 5 correct plots ft their points Must join minimum of 7 points
	Joined by	curve or ruled lines	C1ft	ft their points Must join minimum of 7 points
	(b) (i) 161 to		1	
	(ii) 171 to		1	
	(iii) Their	(b)(ii) – 150	1ft	Strict ft provided > 0
	(c) (i) $\frac{55}{200}$	oe $\left(\frac{11}{40}\right)$	1	isw incorrect cancelling for both parts of (c)
	(ii) $\frac{1100}{3980}$	$\frac{0}{0}$ oe $\left(\frac{11}{398}\right)$	3	M2 for 2 × their $\frac{55}{200}$ × $\frac{10}{199}$ oe soi by 0.0276
				or M1 for their $\frac{55}{200} \times \frac{10}{199}$ oe $\left(\frac{11}{796}\right)$ soi by
				0.0138
	(d) (i) 30, 33	5, 20	2	B1 for 1 correct value
		as in correct position		
		cm, fd = 4	1	State & Grow their 20 control 0
		cm, fd = 6 cm, fd = 3.5	1ft 1ft	Strict ft from their 30 unless 0
	W = 2	cm, fd = 3.5	1ft	Strict ft from their 35 unless 0 $\frac{PO}{11}$
6	(a) (i) 13 ca	o www	2	M1 for $\frac{PQ}{19.5} = \frac{11}{16.5}$ oe or sf = 2/3 or 1.5 seen
		. 10.4	2	or correct trig
	(ii) 10.39	to 10.4 www	3	M2 for $\sqrt{19.5^2 - 16.5^2}$ or explicit trig or M1 for $x^2 + 16.5^2 = 10.5^2$ or implicit trig
				or M1 for $x^2 + 16.5^2 = 19.5^2$ or implicit trig
	(iii) 57.76	to 57.81 www	2	M1 for $\sin = \frac{16.5}{19.5}$ oe
	(iv) 655 to	0 655.4	2	M1 for $0.02 \times (32)^3$
	(b) (i) 163.5	to 164 www	4	M2 for $67^2 + 105^2 - 2 \times 67 \times 105\cos 143$
				or M1 for implicit form
	(ii) 100.9	to 100.9 or 101 www	4	A1 for 26732 to 26896 B1 for (DEF =) 78° May be on diagram
	(II) 100.8	W 100.7 0I 101 WWW	4	
				and M2 for $\frac{105 \times \sin 70}{\sin \text{ their } 78}$ provided their $78 \neq 32$
				or 70
				or M1 for $\frac{EF}{\sin 70} = \frac{105}{\sin \text{ their } 78}$ of their $78 \neq 32$
				or 70

www.xtrapapers.com

	Page 5	Mark Scheme: Teachers' version		Syllabus Syllabus	
		IGCSE – October/N	November	2010	0581 23
7	(a) $w = 59$ (angle in) isosceles (triangle)		1 1	correct angle	Syllabus 0581 or the reasons are dependen or correct ft angle t statement in reason loses that ma
	x = 31 (angle	in) semicircle (= 90) oe	1ft 1	ft 90 – their w Allow diamet	V
		s in) same segment) same arc (are =)	1		
	z = 28 (angle	s in) triangle (= 180)	1ft 1	ft 180 – their	(w+x+y) or 90 – their y
	(b) (i) ($\begin{pmatrix} 2\\3 \end{pmatrix}$	1		
	(ii) ($\begin{pmatrix} -2\\4 \end{pmatrix}$	2ft	ft $\begin{pmatrix} 0\\7 \end{pmatrix}$ – their B1 ft for one	r (i) correct element
	(c) (i)	t final answer	1		
	(ii) -	$\frac{1}{3}(-\mathbf{t}+\mathbf{r})$ final answer	2	M1 for correct or $\overrightarrow{TR} = -\mathbf{t} + \mathbf{r}$ or $\overrightarrow{TP} = \frac{1}{3} \overrightarrow{TR}$	
	(iii)	$\frac{1}{3}$ r final answer	2		ct unsimplified answer oe for any correct path
	(iv) ($QP = \frac{1}{3}OR$ oe	1dep	Dependent o	on correct answer in (iii)
		<i>QP</i> is parallel to <i>OR</i> or r	1dep	Dependent o	on multiple of r as answer in (iii)

Page 6		Mark Scheme: Teachers' version IGCSE – October/November 2010		sion Syllabus 2010 0581	the second seco
	1				anne.
8	(a) (i) 3 (ii) 4		1 1		7
	(iii) 4 <i>x</i> -	- 3 final answer	2	M1 for $2(2x - 1) - 1$	
	(iv) $\frac{x+2}{2}$	$\frac{1}{2}$ oe final answer	2	M1 for $x = 2y - 1$ or $\frac{y+1}{2}$	oe or $\frac{f(x)+1}{2}$ oe
	(v) $-\frac{1}{2}$	and $1\frac{1}{2}$	4	in for	For $4x^2 - 2x - 2x + 1$ M1 for $(2x + 1)(2x - 3)$ rect substitution rmula y $(4 \pm \sqrt{64})/8$
	(b) (i) y =	$\frac{16}{x}$ oe	2	Condone $y = k/x$ and $k = 16$ M1 for $y = \frac{k}{x}$ oe	stated
	(ii) 32		1	X	
)	(a) (i) 21 (ii) P ₆ = (iii) 127 (iv) 382 (v) 113 (vi) 750	5 25	1 1 1ft 1 1ft	Allow 3(6 + 1) ft for 3 × their (iii) ft their (v) – their (iv) provi	ded > 0
	(b) (i) 56		2	M1 for $1 \times 6 + 2 \times 5 + 3 \times 4$	$+4 \times 3 + 5 \times 2 + 6 \times 1$
	(ii) S ₆ =	$=\frac{1}{6} \times 6 \times 7 \times 8$ or better (= 56)	1		
	(iii) 154	-	1		
	(c) $56 - 35 =$		1		
	(d) Correct a	algebraic proof with no errors	3	M1 for $\frac{1}{6}n(n+1)(n+2) - \frac{1}{6}n(n+1)(n+2) - \frac{1}{6}n(n+1)(n+2)(n+2) - \frac{1}{6}n(n+1)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2$	$\frac{1}{6}(n-1)(n)(n+1)$ oe
				and M1 for $\frac{1}{6}n(n+1)(3)$ oe	9