UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0581 MATHEMATICS

0581/31

Paper 3 (Core), maximum raw mark 104

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

F	Page 2	Mark Scheme: Teachers' version	Syllabus	3
		IGCSE – May/June 2011	0581	No.
Abbre	eviations		`	Carry
cao	correct an			C. C.
cso	correct so	lution only		Se l
dep dependent				i di
ft follow through after error			On	
isw	ignore sub	esequent working		
oe	or equival	ent		

Abbreviations

follow through after error ignore subsequent working or equivalent ft isw

oe SCSpecial Case

without wrong working www

	Qu.	Answers	Mark	Part Mark
1	(a)	342.63	2	M1 for 500 ÷ 1.4593
	(b)	280	3	M1 for 2 × 62 + 3 × 52 B1 for 124 or 156 seen
	(c)	71.4 or 71.42 to 71.43	1ft	
	(d)	4.12	2	B1 for 6×0.98 seen B1 for 5.88 or $4 + 6 \times 0.02$
	(e)	correct working	1	$50 \times 2.54 = 127$ oe or $130 \div 2.54 = 51.2$ or better
2	(a)	(triangular) prism	1	
	(b)	49.6 to 50.4	1	
	(c) (i)	6	2	M1 for $\frac{1}{2} \times 4 \times 3$ oe
	(ii)	42	2ft	M1 for their (c)(i) \times 7
	(d)	3.5	2ft	M1 for their (c)(ii) \div (3 × 4) oe
3	(a) (i)	10	2	M1 3×24 or better
	(ii)	8	3	M1 for $19 = 3m - 5$ oe M1 for $m = (19 + 5) \div 3$ oe
	(b)	$7fg-g^3$	2	B1 for $7fg$ or B1 for $-g^3$
	(c)	6h(3h-2j)	2	B1 for partial factorisation $2(9h^2 - 6hj)$ or $3(6h^2 - 4hj)$ or $h(18h - 12j)$ or $6(3h^2 - 2hj)$ or $3h(6h - 4j)$ or $2h(9h - 6j)$ or B1 for $6h(ah - 2j)$ or $6h(3h - bj)$
	(d)	$\frac{t-15}{8}$	2	M1 for correct first step or M1 for correct second step ft
	(e)	9	3	M1 for $3p - 15$ M1 for collecting their terms $2p = k$ or $kp = 18$

Page 3	Mark Scheme: Teachers' version	Syllabus	.0
_	IGCSE – May/June 2011	0581	93

			20
4 (a) (i)	1	1	-ambridge
(ii)	15	1	The state of the s
(iii)	10	1	
(b) (i)	3	1	
(ii)	24	2	M1 for $4 \div 10 \times 60$ or M1 for $4 \div \frac{1}{6}$, 4×6 , $(4 \times 60)/10$ oe
(iii)	6.67 or 6.66(6)	3	M1 for dist = 5 and time = 45 seen M1 for $5 \div 45 \times 60$ oe
(c)	horizontal line to (105, 5) line from (their 105, 5) to (10 + their 105, 0)	1 1ft	
5 (a) (i)	2	2	M1 for numbers representing change in y / change in x Implied by $2k/k$
(ii)	2x + 1	2ft	M1 for {their (a)(i)} $x + j$ or $kx + 1$ (j,k not equal to 0)
(b) (i)	2 -2 2	2	B1 for 2 correct
(ii)	7 points correct	3 ft	B2 for 5 or 6 points correct B1 for 3 or 4 points correct
	smooth curve	1	Must be close to parabolic in shape
(iii)	-1.5 to -1.3 cao 1.3 to 1.5 cao	1 1	
(c)	(-1, -1) and $(3, 7)$ cao	1, 1	

Page 4	Mark Scheme: Teachers' version	Syllabus	· 20 V	
	IGCSE – May/June 2011	0581	123	

		1	32
6 (a) (i)	144	1	Add.
(ii)	125	1	ambridge.
(iii)	103	1	
(iv)	159	1	
(b)	$2^3 \times 11$ or $2 \times 2 \times 2 \times 11$	2	SC1 for 2 and 11 seen, no extras or SC1 for $2 \times 4 \times 11$
(c)	24	2	SC1 for at least one of 2, 3, 4, 6, 8 or 12 or SC1 for $72 = 3 \times 24$ and $96 = 4 \times 24$
(d)	60	2	SC1 for $60k$ or SC1 $2\times2\times3\times5$ oe
7 (a) (i)	correct reflection	1	
(ii)	correct rotation	2	SC1 for rotation 90° anti-clockwise or 90° clockwise about any other point
(b) (i)	enlargement sf 2 about origin	1 1 1	independent marks
(ii)	translation by $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$	1 1	independent marks
8 (a)	frequencies 5, 3, 3, 0, 2	3	B2 for 4 correct, B1 for 3 correct If frequencies blank then SC2 for all tallies correct, SC1 for 3
(b) (i)	9	1	
(ii)	3	1ft	
(iii)	5	2	M1 clear attempt to find middle
(iv)	4.8	3	M1 for Σ their $f \times x$ implied by 144 – clear attempt M1 dep for dividing by 30 isw
(c) (i)	$\frac{3}{30}$ oe	1	
(ii)	0	1	allow 0/30 only, accept zero, none, impossible
(iii)	$\frac{17}{30}$ oe	1	accept 0.566 to 0.567 isw

Page 5	Mark Scheme: Teachers' version	Syllabus	.0	
	IGCSE – May/June 2011	0581	100	

9	(a)	correct triangle with arcs	2	B1 without arcs or SC1 correct mirror image with arcs
	(b)	68° to 71°	1ft	oc.
	(c) (i)	perpendicular bisector with 2 pairs of arcs	2	SC1 if accurate without arcs or accurate arcs with no line or accurate with arcs of AB or AC
	(ii)	3 to 3.4 cm	1ft	for their P on their bisector
	(d)	arc centre their A radius 5 cm	1ft	minimum must cut their AB and AC
	(e)	shading inside arc and to left of perpendicular bisector	2	SC1 for either condition met
10	(a) (i)	95.8 or 95.83 to 95.84	2	M1 for $120 \times \sin 53$ or $\sin 53 = \frac{x}{120}$ oe
	(ii)	233°	1cao	
	(b) (i)	20.6° or 20.55 to 20.56	2	M1 for $\tan = \frac{9}{24}$ oe
	(ii)	17.9	3	M2 for $\sqrt{20^2 - 9^2}$ or M1 for $x^2 + 9^2 = 20^2$ oe