

Wany, Papa Cambridge, com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus r
	IGCSE – May/June 2011	Syllabus 0581
breviations		Cambridg
correct a	nswer only	10m
correct s	olution only	.9
p depende	nt	
follow t	rough after error	
ignore s	ibsequent working	
or equiv		
Special		
-	wrong working	
	rounding to	
i anything		

Qu.	Answers	Mark	Part Marks
1 (a)	(i) $\frac{1380}{62+53} \times 62$	1	Allow 115 for 62 + 53
	(ii) 7.27 (7.271 to 7.272)	1	
	(iii) 42	2	M1 for $\frac{3150}{75}$ oe
(b)	(i) 235	3	B2 for angle $ACS = 55$ or angle $ACN = 125$ B1 for 55 seen
	(ii) 12.6 (12.58 to 12.59)	3	M2 for $\frac{4}{6} \times 18.9$ or $4 + 4 + 2 \times 4 \times \cos 55$ or $4 + 4 + 2 \times 4 \times \sin 35$ oe
			(M1 for $\frac{4}{6}$ soi or 2×4×cos55 or
			6 $2 \times 4 \times \sin 35 \operatorname{soi}$ oe)
(c)	1500	3	M2 for $\frac{1380}{1-0.08}$ oe (M1 for recognition that 92% = 1380)

Page 3		Mark Scheme: Teachers' version IGCSE – May/June 2011			Syllabus ···· 0581	5
		IGCSE – Mayn	Julie 201		0301 30	2
(a)	Monday $\frac{3}{5}$	$, \frac{2}{5}$	1		Syllabus 0581	10.
	Tuesday $\frac{4}{7}$	$, \frac{3}{7}$	1			
	$\frac{5}{7}$	$, \frac{2}{7}$	1			
(b)	(i) $\frac{12}{35}$	be cao	2	M1 $\frac{3}{5} \times \frac{4}{7}$ f	ft their tree	
	(ii) $\frac{9}{35}$	be cao	2	M1 $\frac{3}{5} \times \frac{3}{7}$ f	ft their tree	
	(iii) $\frac{19}{35}$	be	2 ft) + $\frac{10}{35}$ ft their tree throughout (iii)
				5 7	$\frac{5}{7}$ + their (b)(ii)	
				or $1 - \frac{3}{5} \times \frac{4}{7} - \frac{4}{7}$	$\frac{2}{5} \times \frac{2}{7}$	
(c)	$\frac{34}{35}$ oe cao		3		hroughout (iv) $2 2 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	
					$\frac{2}{5} \times \frac{2}{7} \times \frac{1}{4} \left(= 1 - \frac{1}{35} \right)$ $2 1 (1)$	
				_	$\frac{2}{7} \times \frac{1}{4} \left(= \frac{1}{35} \right)$	
				or M2 for $\frac{5}{5}$ + (M1 for any t	$+\frac{2}{5}\times\frac{5}{7}+\frac{2}{5}\times\frac{2}{7}\times\frac{3}{4}$ two of these)	
(a)	3 www		3	M1 for $p = \frac{1}{6}$	$\frac{k}{(m+1)}$ or A1 for $k = 36$	
					(m+1) $<9 = p \times 12$ oe	
(b)	(i) $(x+5)($	x – 5)	1			
	(ii) $\frac{(2x+1)}{(x-5)}$	final answer	3	B2 for factor	s $(2x+1)(x+5)$ or SC2 for fin	al
				answer $\frac{x+\frac{1}{2}}{x-5}$	5	
					(x+a)(x+b) where $ab = 5$ or	
					or SC1 for $(x + \frac{1}{2})(x + 5)$)	
(c)	x < 7 oe fin	al answer	3		56 where * is inequality or = s 20 or $36 - 3x$)	gn

Pa	age 4		Mark Scheme: Teac			Syllabus Syllabus
			IGCSE – May/J			0581 736
4 (a)	(i)		$G(G)) = \frac{6^2 + 14^2 - 12^2}{2 \times 6 \times 14}$	M2 A2	M1 for impl A1 for 0.523	
	(ii)		14 × sin (their 58.4) oe 5.77 to 35.78	M1 A1 ft	ft their (i) Correct or ft	
(b)			$\frac{\sin(117)\times12}{18}$	M2	M1 for impl	icit form
	36.4	or 36.44		A1		
5 (a)	(i)	Correct t	ranslation (see diagram)	2	SC1 for trar	solution by $\begin{pmatrix} -3\\ k \end{pmatrix}$ or by $\begin{pmatrix} k\\ -2 \end{pmatrix}$
	(ii)	Correct 1	eflection (see diagram)	2	SC1 for refle	ection in $y = -1$
(b)	(i)	Stretch, (factor) 3 y-axis or	x = 0 invariant	1 1 1		
	(ii)	Rotation 90° clock $(1, -1)$	cwise	1 1 1	Accept –90°	,
(c)	(i)	$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$	ft from (b)(i)	2 ft	×	$ \begin{pmatrix} 0 \\ 3 \end{pmatrix} (\text{ft from (b)(i)}) \text{ or } \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} $ raic or numeric but $\neq 1$ or 0
	(ii)	Rotation 180° Origin	,	1 1 1	Accept <i>O</i> or	
6 (a)	23.6	(23.60)		2	M1 for 14^2 +	+ 19 ²
(b)	2300) or 2303 t	o 2304 cao	4	M3 for $2 \times \frac{1}{2}$ their BC \times 3 M2 for 4 of 1 M1 for $\frac{1}{2} \times \frac{1}{2}$	these added
(c)	4788	8 or 4790	cao	2	M1 their tria	ngle area × 36
(d)	43(.0	0) or 43.04	to 43.05 cao	2	M1 for (their	$(a))^2 + 36^2$ or $36^2 + 19^2 + 14^2$
(e)	18.9	° to 19.02	2° cao	3	M2 for inv s	in $\left(\frac{14}{\text{their } CE}\right)$ or
					$\left(\sqrt{1}\right)$	$\frac{14}{9^2 + 36^2}$ or $\frac{14}{9^2 + 36^2}$ or complete lenger
					$\left \begin{array}{c} \text{Inv}\cos\left(-\frac{1}{t}\right) \right \right $	$\frac{9^{\circ} + 36}{\text{neir } CE}$ or complete longer
					methods (M1 for clea	rly identifying angle CEA)

2	age 5	Mark Scheme: Teach IGCSE – May/Ju			Syllabus 0581	ww.xtrapapers.com
		1903E – May/Ju		1	0301	aCan
	1(.00) 4(.00) 11.1(1) 1(.00) 0.25	3	B2 for 4 corr	ect, B1 for 3 correc	et sambridge.co
	10 points	plotted	P3 ft		points correct ft points correct ft	Se.Com
		aped curve through 10 points 2 points slightly missed)	C1 ft		s if shape correct –	ignore anything
		curves not crossing <i>x</i> -axis and ng or crossing <i>y</i> -axis	B1	Independent		
	-0.85 to -	- 0.75 cao	1			

	8		
(c)	-0.85 to - 0.75 cao 0.75 to 0.85 cao	1 1	
(d)	Tangent drawn (ruled) at $x = 1.5$ - 3 to -2	T1 2	Allow slight daylight Dep on T1 M1 evidence rise/run dependent on tangent SC1 for answer in range 2 to 3 Answer implies M but not the T mark
(e)	(i) $y = x - 2$ oe	1	
	(ii) line ruled to cross curve	2 ft	Dependent on (i) in form $y = mx + c$, $m \neq 0$, $c \neq 0$ B1 for gradient ft or y intercept ft but again to cross curve at all possible points
	(iii) 2.5 to 2.7 cao	1	Dependent on (e)(i) correct
8	14.2	3	M1 for Σfx (10 × 11 + 8 × 12 + 16 × 13 + 11 × 14 + 7 × 15 + 8 × 16 + 6 × 17 + 9 × 18) (1065) (allow one error or omission) M1dep for $\div \Sigma f$ (10 + 8 + 16 + 11 + 7 + 8 + 6 + 9) (75) (allow one further error or omission)
	14 13	2 1	M1 for 37th, 37.5th or 38th seen
(b)	(i) 21, 30, 15	2	B1 for 2 correct
	(ii) $\begin{array}{ccccccccc} 20 & 20 & 10 & (10) \\ 1.05 & 1.5 & 1.5 & (0.9) \end{array}$	3	1, 1, 1 for each correct vertical pair
(c)	$\frac{10 \times 2.5 + 12 \times 3 + 4n}{10 + 12 + n} (= 3.1)$	M2	M1 for either numerator or denominator seen
	multiplying across and collecting terms	M1	dep on linear numerator and denominator
	(<i>n</i> =) 8 www 4	A1	their $(68.2 - 25 - 36) =$ their $(4 - 3.1) \times n$

Page 5

7 (a)

(b)

P	age 6	Mark Scheme:	· Teachers' ve	rsion	Syllabus 0581	xtrapa
	age o		May/June 201		0581	ba
	1			1		am
9 (a)	$x \ge 3$	$y \ge 2$	1, 1			19
(b)	$x + y \le 9$		1			
(c)	$6x + 14y \leq$	÷ 84	1			
(d)	x = 3 $y =$	= 2	1, 1		and freehand lines long	enough to
	x + y = 9		2		rrect quadrilateral through (0, 9) or (9, 0)	
	Line from	(0, 6) to $(14, 0)$	2	B1 for throug	gh (0, 6) or (14, 0)	
		adrilateral unshaded or c	learly 1			
(e)	\$ 70		2	B1 for considering (7, 2)		
10(a)	(A 1) 8 2		2	B1 for 3 correct		
	$\begin{array}{ccc} (B & 4) & 8 \\ (C & 4) & 9 \end{array}$	12 16 20 16 25 36	1 2	B1 for 3 corr	ect	
(b)	512		1			
	169		1			
(c)	25 99		1			
(d)		4 <i>n</i> oe	1, 1			
(u)		$(1)^2 - 4n$ oe but isw	1, 1 1, 1	Likely oe is ($(n-1)^2$	