

Wany, Papa Cambridge, com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

F	Page 2	Mark Scheme: Teachers' version	Syllabus	
		IGCSE – May/June 2011	Syllabus 0581	
Abbre	viations			
cao	correct answe	er only		
cso	correct soluti	on only		
dep	dependent			
ft	follow throug	gh after error		
isw	ignore subsec	quent working		
oe	or equivalent			
SC	Special Case			
www	without wron			
art	anything rou	nding to		
soi	seen or impli			

Qu.	Ans	wers	Mark	Part Marks
1 (a)	(i) (ii) (iii)	34.65 41.58 264	1 2 3	M1 for 0.15×277.2 implied by 41.6 or 41.58 seen and not spoiled M2 for $277.2 \div (1 + 0.05)$ o.e. or M1 for recognition that $105(\%) = 277.20$
(b)	(i) (ii)	1000 3650	2 2	M1 for 2200 ÷ (2 + 4 + 5) × 5 M1 for 2200 ÷ 44 × 73
2 (a)	(i)	Image at (4, -4), (6, -4), (6, -6), (2, -6)	2	SC1 for reflection in <i>y</i> -axis
	(ii)	Image at $(-4, -4)$, $(-4, -6)$, $(-6, -6)$, (-6, -2)	2 ft	SC1 ft if rotated 90° anti-clockwise about $(0, 0)$
	(iii)	Reflection y = -x	1 ft 1 ft	ft their Z (name of transformation) independent (full details)
(b)	(i)	Image at (2, 2), (3, 2), (3, 3), (1, 3)	2	SC1 for enlargement s.f. 0.5 with correct orientation, different centre or $sf - 0.5$, centre (0, 0)
	(ii)	$\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$ cao	2	B1 B1 each column
(c)		Image at (0, 4), (2, 4), (0, 6), (-4, 6)	2	SC1 if 3 vertices correct
	(ii)	$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$	2	SC1 for $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \neq 0$ but can be algebraic or
				numeric or for $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$

Page 3		Mark Scheme: Teac IGCSE – May/J			vilabus 0581
					Can
3 (a)	$(x+5)^2 - 2x^2$	$^{2} = 1$ oe	M1	Equiv means equation allowing $(x + 5)^2$ explanations of the second se	
	$(x+5)^2 = x^2 + 5x^2 $	+ 10x + 25 or $+ 25$	B1		
	$x^{2} + 10x + 25$ 0 = x ² - 10x		E1		ed without any errors or previous line with $(x + 5)^2$
(b)	12		3	from formula. Allow SC1 for $(x + a + b = -10)$ then SC1 ft (depend	
(c)	53.1 to 53.2	www 3	3	method or M1 for tan = $\frac{1}{2}$ d leading to any angle be implicit and bod	
4 (a)	$(\cos(A)) = \frac{6^2 + 8^2 - 9^2}{2.6.8}$		M2	M1 for correct impl	icit equation with cosA
		2.0.8 www 4	A2	A1 for 0.1979 to 0.1	98 (this implies M2)
(b)	(i) 78.6		1	Allow 78.58	
	(ii) $r = \frac{1}{\sin^2 r}$	$\frac{4.5}{(78.6)}$ oe	M2	$(M1 \text{ for } \sin(78.6) =$	$\frac{4.5}{r}$)
		(78.6) 91 cao www 3	A1	Allow 78.58 or the	r eir angle <i>BOM</i> for M2 or M2
(c)	(c) 35.5 (35.48 to 35.57) cao www 4		4	Allow 78.58 (23.5 M1 Circle = $\pi \times 4.5$ (66.15 to 66.22)	9 ² Allow 4.590 to 4.591 = triangle / circle × 100

ww.xtrapapers.com

Page 4		Mark Scheme: Teachers' version			Syllabus Syllabus
		IGCSE – May/Ju	ine 201 [°]	1	0581 230
	1			1	Phys
5 (a)	9.11, 4.25	5, 2,, 2, 4.25, 9.11	3	B2 for 4 or 5	correct and B1 for 2 or 3 corr
(b)		plotted surve through 12 points thes, neither touching y-axis	5	or 9. C1 correct sh	Syllabus 0581 correct and B1 for 2 or 3 corr a), P2 for 10 or 11 points, P1 for 8 hape ft their points shape same. ing between – 0.5 and 0.5. ent
(c)	· · ·	0 gent at -1.5 o -1.8	1 T1 2	Dependent o M1(also dep SC1 for 1.8 to	on T1) for attempt at rise/run or
	0.55	7 to -1.55 , -0.7 to -0.55 , 5 to 0.7, 1.55 to 1.7 2x drawn to meet graph twice	2 B1	B1 for 1 or m	
	1	to 1.9	B1 B1		
6 (a)	(i) 5.8 (ii) 4.6 (iii) 2.35	to 4.65 5 to 2.5	1 1 1		

2

2

4

2**ft**

2ft

8.5

8.5

M1)

B1

SC1 for 28 or 29

Must be integers. B1 either.

in interval, including boundaries

a sum of 114 to gain the A mark.

B1 either ft (ft their table)

B1 ft (ft their freq. densities)

M1 for 3 or 4 correct mid-values seen 2, 5, 6.5,

M1 for Σfx , **ft** their frequencies and *x* anywhere

 $36 \times 2 + (72 \text{ to } 76) \times 5 + (38 \text{ to } 42) \times 6.5 + 50 \times 6.5$

M1 for ÷ 200 or their 200 (dependent on second

(74, 40 give 1127 then 5.635 (or 5.64 or 5.63)) Other pairs of frequencies from **(b)(i)** must have

(iv) 172 or 171

72 to 76, 38 to 42

(ii) Their correct $\Sigma fx \div 200$

(iii) $p \div 2$, q, where p, q are from (b)(i)

correct width

Two correct heights

Histogram with two new columns of

(b)

(i)

Mark Scheme: Teachers' version Syllabus IGCSE – May/June 2011 0581

Page 5

	IGCSE – May/Ju	ne 2011	0581
			Can
7 (a)	Correct tree diagram.	5	0581 B1 for labels flower and not flower First pair B1 for $\frac{7}{10}$ and $\frac{3}{10}$ B1 for next three branches after flowers B1 for clear labels for colours
			B1 for clear labels for colours B1 for $\frac{2}{3}$, $\frac{1}{4}$ and $\frac{1}{12}$ in correct places If three branches at ends of both branches of first pair, lose final B, unless probabilities of 0 indicated.
(b)	$\frac{33}{40}$ o.e. (0.825) cao	3	M2 for $1 - \frac{7}{10} \times \frac{1}{4}$ (M1 for $\frac{7}{10} \times \frac{1}{4}$ or $\frac{7}{10} \times (1 - \frac{1}{4})$) oe or M2 for $\frac{3}{10} + \frac{7}{10} \times \frac{2}{3} + \frac{7}{10} \times$ their $\frac{1}{12}$ or $\frac{3}{10} + \frac{7}{10} \times \frac{3}{4}$ oe
(c)	7 cao	2	M1 for $120 \times \frac{7}{10} \times \text{their } \frac{1}{12}$
8 (a)	Arc centre D, radius 6 cm	1	
(b)	(i) Perp bisector of AB , with two pairs	2	At least 3 cm from <i>AB</i> . SC1 accurate without
	of arcs (ii) Bisector of angle <i>B</i> , with arcs	2	arcs or accurate arcs (but no choice) At least 5 cm from B . SC1 accurate without arcs or accurate arcs (but no choice)
(c)	 (i) Q at intersection of loci (ii) 2.7 cm to 2.9 cm cao 	1 1	Dependent on at least both SC1's Dependent on (c)(i)
(d)	Region inside arc, to left of perp bisector and below angle bisector	1	Dependent on at least both SC1's in (b)
9 (a)	(i) 81 (ii) 8.5	2 2	B1 for $(f(2) =)$ 7 B1 for $(f(0.5) =)$ 2.5
(b)	$\frac{x-1}{3}$ oe	2	M1 for $(x =) \frac{y-1}{3}$ or $(x =) \frac{f(x)-1}{3}$ or $3y = x-1$ or $3f(x) = x-1$ or -1 then $\div 3$ in flowchart (must be clear)
(c)	$3x^2 + 12x + 13$ final answer	2	M1 for $3(x + 2)^2 + 1$ or better
(d)	$(x=) \ \frac{-3 \pm \sqrt{3^2 - 4(1)(1)}}{2(1)}$	2	B1 for $\sqrt{3^2 - 4(1)(1)}$ or better Seen anywhere If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ oe,
	–2.62, – 0.38 final answer	1,1	B1 for $p = -3$ and $r = 2(1)$ or $\left(x + \frac{3}{2}\right)^2$ B1 then $\sqrt{\frac{9}{4}} - 1$ B1 If 0, SC1 for -2.6 or -2.62 or -2.618 and -0.4(0) or -0.38 or -0.382 to -0.381 seen Answers only B1 B1

					Syllabus0581 $\vec{F} + \vec{CM}$ o.e. can be written in the $\vec{DL} + \vec{LN}$ o.e can be written in
Page 6		Mark Scheme: Teac			Syllabus Pr
		IGCSE – May/J	une 201 ⁻	1	0581 232
10 (a)	(i) (a) p	$\mathbf{p} + \mathbf{q}$	1		enne.
	(b) -	$\frac{1}{2}\mathbf{p}-\frac{1}{2}\mathbf{q}$ oe	2	M1 for \overrightarrow{LC} of p and/or q	$\vec{C} + \vec{CM}$ o.e. can be written in the
	(c) =	$\frac{3}{4}\mathbf{p} + \frac{3}{4}\mathbf{q}$ oe cao	2		$\overrightarrow{DL} + \overrightarrow{LN}$ o.e can be written in d/or q ft their (i)(b)
	(ii) \overrightarrow{AN}	is a multiple of \overrightarrow{AC} o.e	1	Must be vector (c))	ors (dependent on answers to (a),
(b)	(i) 30 (ii) 135		2 1 ft		x + 15 + 75 = 180 or better x but only if final answer obtuse
11 (a)	(i) 10		1		
	(ii) $\frac{3\times 4}{2}$	or $\frac{3 \times (3+1)}{2}$ (= 6)	1		
	(iii) 7260		1		
	(iv) 12 84	0	2	M1 for $S_{200} - \frac{80}{2}(121 + 200)$	S ₁₂₀ (20100 – 7260) or o.e.
	(v) 160 4	00	2	M1 for $2(1 + 2)$	$2+3+\ldots+400)$ o.e.
(b)	(i) 36, 1		1,1	Ignore right-h	hand column
	(ii) 1102		1		
	(iii) $\left\lfloor \frac{n(n-1)}{2} \right\rfloor$	$\left(\frac{+1}{2}\right)^2$ oe	1	isw	
	(iv) 3 348	s 900	1		e root then \times 2 (1056)
	(v) 32		2	or SC1 for an	nswer 33